Publications by authors named "Tommy Norin"

Article Synopsis
  • Among individuals of the same age and size, there are consistent differences in how quickly they use energy, which may influence their behaviors, like foraging.
  • The study examined the cunner fish, which shows reduced activity in colder environments, to understand if metabolic and behavioral changes occur together when conditions shift.
  • Findings revealed that while there is significant variation in how fish's metabolic rates adapt to temperature changes, their movement activity does not show similar variation, indicating that these traits can change independently in response to environmental changes.
View Article and Find Full Text PDF

Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field.

View Article and Find Full Text PDF
Article Synopsis
  • All animals compete for free energy which they use for growth and reproduction, especially within communities of similar-sized animals that share habitats.
  • The study suggests replacing taxonomic identities with functional traits, particularly metabolic rates, to better understand animal community dynamics and coexistence.
  • Key metabolic traits—resting metabolic rate, maximum metabolic rate, and aerobic scope—offer a standardized way to measure energy acquisition and allocation across different animal species, allowing for improved insights into community ecology.
View Article and Find Full Text PDF

Larger animals studied during ontogeny, across populations, or across species, usually have lower mass-specific metabolic rates than smaller animals (hypometric scaling). This pattern is usually observed regardless of physiological state (e.g.

View Article and Find Full Text PDF

Organismal metabolic rates (MRs) are the basis of energy and nutrient fluxes through ecosystems. In the marine realm, fishes are some of the most prominent consumers. However, their metabolic demand in the wild (field MR [FMR]) is poorly documented, because it is challenging to measure directly.

View Article and Find Full Text PDF

Metabolic rate (MR) usually changes (scales) out of proportion to body mass (BM) as MR = aBMb, where a is a normalisation constant and b is the scaling exponent that reflects how steep this change is. This scaling relationship is fundamental to biology, but over a century of research has provided little consensus on the value of b, and why it appears to vary among taxa and taxonomic levels. By analysing published data on fish and taking an individual-based approach to metabolic scaling, I show that variation in growth of fish under naturally restricted food availability can explain variation in within-individual (ontogenetic) b for standard (maintenance) metabolic rate (SMR) of brown trout (Salmo trutta), with the fastest growers having the steepest metabolic scaling (b ≈ 1).

View Article and Find Full Text PDF

Shallow or near-shore environments, such as ponds, estuaries and intertidal zones, are among the most physiologically challenging of all aquatic settings. Animals inhabiting these environments experience conditions that fluctuate markedly over relatively short temporal and spatial scales. Living in these habitats requires the ability to tolerate the physiological disturbances incurred by these environmental fluctuations.

View Article and Find Full Text PDF
Article Synopsis
  • The Editors-in-Chief of the Journal of Experimental Biology emphasized the need for consensus building, data sharing, and cross-disciplinary integration to tackle scientific challenges related to climate change.
  • The study found that only a small percentage of experimental biology research published in top journals includes open data and open code, hindering reproducibility and transparency in the field.
  • Increasing adoption of open science practices, especially focusing on FAIR (Findable, Accessible, Interoperable, Re-usable) principles, is essential for enhancing collaboration and improving the effectiveness of climate change research.
View Article and Find Full Text PDF

Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli.

View Article and Find Full Text PDF

Invasive species exert negative impacts on biodiversity and ecosystems on a global scale, which may be enhanced in the future by climate change. Knowledge of how invasive species respond physiologically and behaviorally to novel and changing environments can improve our understanding of which traits enable the ecological success of these species, and potentially facilitate mitigation efforts. We examined the effects of acclimation to temperatures ranging from 5 to 28°C on aerobic metabolic rates, upper temperature tolerance (critical thermal maximum, CT), as well as temperature preference () and avoidance () of the round goby (), one of the most impactful invasive species in the world.

View Article and Find Full Text PDF

Environmentally-induced changes in fitness are mediated by direct effects on physiology and behaviour, which are tightly linked. We investigated how predicted ocean warming (OW) and acidification (OA) affect key ecological behaviours (locomotion speed and foraging success) and metabolic rate of a keystone marine mollusc, the sea hare Stylocheilus striatus, a specialist grazer of the toxic cyanobacterium Lyngbya majuscula. We acclimated sea hares to OW and/or OA across three developmental stages (metamorphic, juvenile, and adult) or as adults only, and compare these to sea hares maintained under current-day conditions.

View Article and Find Full Text PDF

Lay summary Selective harvest of wild organisms by humans can influence the evolution of plants and animals, and fishing is recognized as a particularly strong driver of this process. Importantly, these effects occur alongside environmental change. Here we show that aquatic hypoxia can alter which individuals within a fish population are vulnerable to capture by trawling, potentially altering the selection and evolutionary effects stemming from commercial fisheries.

View Article and Find Full Text PDF

Atlantic cod () and haddock () are two commercially important marine fishes impacted by both overfishing and climate change. Increasing ocean temperatures are affecting the physiology of these species and causing changes in distribution, growth, and maturity. While the physiology of cod has been well investigated, that of haddock has received very little attention.

View Article and Find Full Text PDF

Physiological mechanisms determining thermal limits in fishes are debated but remain elusive. It has been hypothesised that motor function loss, observed as loss of equilibrium during acute warming, is due to direct thermal effects on brain neuronal function. To test this, we mounted cooling plates on the heads of Atlantic cod () and quantified whether local brain cooling increased whole-organism acute upper thermal tolerance.

View Article and Find Full Text PDF

Basal or standard metabolic rate reflects the minimum amount of energy required to maintain body processes, while the maximum metabolic rate sets the ceiling for aerobic work. There is typically up to three-fold intraspecific variation in both minimal and maximal rates of metabolism, even after controlling for size, sex and age; these differences are consistent over time within a given context, but both minimal and maximal metabolic rates are plastic and can vary in response to changing environments. Here we explore the causes of intraspecific and phenotypic variation at the organ, tissue and mitochondrial levels.

View Article and Find Full Text PDF

This study investigated the oxygen consumption of the putative oxygen conformer marbled swamp eel Synbranchus marmoratus during progressive hypoxia. Earlier studies have not reached an agreement on whether S. marmoratus is a conformer or a regulator.

View Article and Find Full Text PDF

Winter dormancy is used by many animals to survive the cold and food-poor high-latitude winter. Metabolic rate depression, an active downregulation of resting cellular energy turnover and thus standard (resting) metabolic rate (SMR), is a unifying strategy underlying the persistence of organisms in such energy-limited environments, including hibernating endotherms. However, controversy exists about its involvement in winter-dormant aquatic ectotherms.

View Article and Find Full Text PDF

Increased ocean temperatures are causing mass bleaching of anemones and corals in the tropics worldwide. While such heat-induced loss of algal symbionts (zooxanthellae) directly affects anemones and corals physiologically, this damage may also cascade on to other animal symbionts. Metabolic rate is an integrative physiological trait shown to relate to various aspects of organismal performance, behaviour and locomotor capacity, and also shows plasticity during exposure to acute and chronic stressors.

View Article and Find Full Text PDF

Group living is ubiquitous among animals [1, 2], but the exact benefits of group living experienced by individual groupmates is related to their spatial location within the overall group [3-5]. Individual variation in behavioral traits and nutritional state is known to affect interactions between individuals and their social group [6, 7], but physiological mechanisms underpinning collective animal behavior remain largely unexplored [8]. Here, we show that while fish at the front of moving groups are most successful at capturing food items, these individuals then show a systematic, post-feeding movement toward the rear of groups.

View Article and Find Full Text PDF

Feeding provides the necessary energy to fuel all fitness-related processes including activity, growth and reproduction. Nevertheless, prey consumption and digestive processes can have physical and physiological trade-offs with other critical functions, many of which are not clearly understood. Using an ambush predator, barramundi (), fed meals ranging 0.

View Article and Find Full Text PDF

It has been suggested that exposure to high temperature or hypoxia may confer tolerance to the other oxygen-limited stressor (i.e., 'cross-tolerance').

View Article and Find Full Text PDF

Temperature-induced limitations on the capacity of the cardiorespiratory system to transport oxygen from the environment to the tissues, manifested as a reduced aerobic scope (maximum minus standard metabolic rate), have been proposed as the principal determinant of the upper thermal limits of fishes and other water-breathing ectotherms. Consequently, the upper thermal niche boundaries of these animals are expected to be highly sensitive to aquatic hypoxia and other environmental stressors that constrain their cardiorespiratory performance. However, the generality of this dogma has recently been questioned, as some species have been shown to maintain aerobic scope at thermal extremes.

View Article and Find Full Text PDF