Protein aggregation correlates with many human diseases. Protein aggregates differ in structure and shape. Strategies to develop effective aggregation inhibitors that reach the clinic failed so far.
View Article and Find Full Text PDFAmyloid aggregation is a key process in amyloidoses and neurodegenerative diseases. Hydrophobicity is one of the major driving forces for this type of aggregation, as an increase in hydrophobicity generally correlates with aggregation susceptibility and rate. However, most experimental systems in vitro and prediction tools in silico neglect the contribution of protective osmolytes present in the cellular environment.
View Article and Find Full Text PDFProtein aggregation is involved in a variety of diseases, including neurodegenerative diseases and cancer. The cellular environment is crowded by a plethora of cosolutes comprising small molecules and biomacromolecules at high concentrations, which may influence the aggregation of proteins in vivo. To account for the effect of cosolutes on cancer-related protein aggregation, we studied their effect on the aggregation of the cancer-related L106R mutant of the Axin protein.
View Article and Find Full Text PDFMany human diseases are caused by the conversion of proteins from their native state into amyloid fibrils that deposit in the extracellular space. Heparan sulfate, a component of the extracellular matrix, is universally associated with amyloid deposits and promotes fibril formation. The formation of cytotoxic prefibrillar oligomers is challenging to study because of its rapidity, transient appearance and the heterogeneity of species generated.
View Article and Find Full Text PDF