Background: Amnestic syndrome of the hippocampal type (ASHT) in Memory Clinics is a presentation common to Alzheimer's disease (AD). However, ASHT can be found in other neurodegenerative disorders.
Objective: To compare brain morphometry including hippocampal volumes between amnestic older adults with and without AD pathology and investigate their relationship with memory performance and cerebrospinal fluid (CSF) biomarkers.
Brain aneurysm detection in Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) has undergone drastic improvements with the advent of Deep Learning (DL). However, performances of supervised DL models heavily rely on the quantity of labeled samples, which are extremely costly to obtain. Here, we present a DL model for aneurysm detection that overcomes the issue with "weak" labels: oversized annotations which are considerably faster to create.
View Article and Find Full Text PDFBackground And Objective: Eye-movement trajectories are rich behavioral data, providing a window on how the brain processes information. We address the challenge of characterizing signs of visuo-spatial neglect from saccadic eye trajectories recorded in brain-damaged patients with spatial neglect as well as in healthy controls during a visual search task.
Methods: We establish a standardized pre-processing pipeline adaptable to other task-based eye-tracker measurements.
Accurate detection and quantification of unruptured intracranial aneurysms (UIAs) is important for rupture risk assessment and to allow an informed treatment decision to be made. Currently, 2D manual measures used to assess UIAs on Time-of-Flight magnetic resonance angiographies (TOF-MRAs) lack 3D information and there is substantial inter-observer variability for both aneurysm detection and assessment of aneurysm size and growth. 3D measures could be helpful to improve aneurysm detection and quantification but are time-consuming and would therefore benefit from a reliable automatic UIA detection and segmentation method.
View Article and Find Full Text PDFPurpose: To evaluate whether radiomics features of late gadolinium enhancement (LGE) regions at cardiac MRI enable distinction between myocardial infarction (MI) and myocarditis and to compare radiomics with subjective visual analyses by readers with different experience levels.
Materials And Methods: In this retrospective, institutional review board-approved study, consecutive MRI examinations of 111 patients with MI and 62 patients with myocarditis showing LGE were included. By using open-source software, classification performances attained from two-dimensional (2D) and three-dimensional (3D) texture analysis, shape, and first-order descriptors were compared, applying five different machine learning algorithms.