IEEE Open J Eng Med Biol
November 2024
The experimental study of the stumble phenomena is essential to develop novel technological solutions to limit harmful effects in at-risk populations. A versatile platform to deliver realistic and unanticipated tripping perturbations, controllable in their strength and timing, would be beneficial for this field of study. We built a modular tripping-eliciting system based on multiple compliant trip blocks that deliver unanticipated tripping perturbations.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
March 2024
Reducing energy consumption during walking is a critical goal for transtibial amputees. The study presents the evaluation of a semi-active prosthesis with five transtibial amputees. The prosthesis has a low-power actuator integrated in parallel into an energy-storing-and-releasing foot.
View Article and Find Full Text PDFPassive ankle-foot prostheses are light-weighted and reliable, but they cannot generate net positive power, which is essential in restoring the natural gait pattern of amputees. Recent robotic prostheses addressed the problem by actively controlling the storage and release of energy generated during the stance phase through the mechanical deformation of elastic elements housed in the device. This study proposes an innovative low-power active prosthetic module that fits on off-the-shelf passive ankle-foot energy-storage-and-release (ESAR) prostheses.
View Article and Find Full Text PDFBackground: Intensive treadmill training (TT) has been documented to improve gait parameters and functional independence in Parkinson's Disease (PD), but the optimal intervention protocol and the criteria for tailoring the intervention to patients' performances are lacking. TT may be integrated with augmented virtual reality (AVR), however, evidence of the effectiveness of this combined treatment is still limited. Moreover, prognostic biomarkers of rehabilitation, potentially useful to customize the treatment, are currently missing.
View Article and Find Full Text PDFThis study aimed to explore novel inertial measurement unit (IMU)-based strategies to estimate respiratory parameters in healthy adults lying on a bed while breathing normally. During the experimental sessions, the kinematics of the chest wall were contemporaneously collected through both a network of 9 IMUs and a set of 45 uniformly distributed reflective markers. All inertial kinematics were analyzed to identify a minimum set of signals and IMUs whose linear combination best matched the tidal volume measured by optoelectronic plethysmography.
View Article and Find Full Text PDF