Soil organic carbon (SOC) depletion, primarily driven by land use change, is a global challenge influenced by factors such as climate, plant cultivation, and adopted management practices. Poplar plantations (PP), predominantly used for plywood and bioenergy production in the Mediterranean, have shown carbon (C) potential capture as biomass. However, their contribution to SOC and climate change mitigation remains understudied.
View Article and Find Full Text PDFTropical deforestation in the African continent plays a key role in the global carbon cycle and bears significant implications in terms of climate change and sustainable development. Especially in Sub-Saharan Africa, where more than two-thirds of the population rely on forest and woodland resources for their livelihoods, deforestation and land use changes for crop production lead to a substantial loss of ecosystem-level carbon stock. Unfortunately, the impacts of deforestation and land use change can be more critical than in any other region, but these are poorly quantified.
View Article and Find Full Text PDFAreas covered by seminatural grasslands have been in constant decline for decades in Europe. This trend is particularly strong for mountain territories, where such traditional agricultural practices as cattle grazing are no longer economically feasible. This study was conducted in the subalpine pasture of Cinte Tesino (TN, Italy), where local farmers have applied the following different management strategies: shorter and longer grazing durations during the season and a complete abandonment for the last 15 years.
View Article and Find Full Text PDFIn terrestrial biosphere, soil represents the largest organic carbon pool, and a small change of soil organic carbon (SOC) can significantly affect the global carbon cycle and climate. Land use change (LUC) and soil management practices coupled with climate variables can significantly influence the soil organic carbon stocks (SOC-S) and its dynamics; however, our understanding about the responses of SOC in different LUC's (e.g.
View Article and Find Full Text PDFSoil quality is fundamental for ecosystem long term functionality, productivity and resilience to current climatic changes. Despite its importance, soil is lost and degraded at dramatic rates worldwide. In Europe, the Mediterranean areas are a hotspot for soil erosion and land degradation due to a combination of climatic conditions, soils, geomorphology and anthropic pressure.
View Article and Find Full Text PDFWoody encroachment is a widespread phenomenon resulting from the abandonment of mountain agricultural and pastoral practices during the last century. As a result, forests have expanded, increasing biomass and necromass carbon (C) pools. However, the impact on soil organic carbon (SOC) is less clear.
View Article and Find Full Text PDFTo evaluate the mitigation potential provided by the SOC pool, we investigated the impact of woody encroachment in the 0-30 cm depth of mineral soil across a natural succession from abandoned pastures and croplands to broadleaves forests on the central Apennine in Italy. In parallel, to assess the effect of the land use change (LUC) from cropland to pasture, a series of pastures established on former agricultural sites, abandoned at different time in the past, were also investigated. Our results show that woody encroachment on former pastures and croplands contributes largely to mitigate climate change, with an increase of the original SOC stock of 45% (40.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2011
Improved tools for tracing phosphate transformations in soils are much needed, and can lead to a better understanding of the terrestrial phosphorus cycle. The oxygen stable isotopes in soil phosphate are still not exploited in this regard. Here we present a method for measuring the oxygen stable isotopes in a fraction of the soil phosphate which is rapidly available to plants, the resin-extractable P.
View Article and Find Full Text PDFIn this study, we assess the possibility of using ground penetrating radar (GPR) and electrical resistivity tomography (ERT) as indirect non-destructive techniques for root detection. Two experimental sites were investigated: a poplar plantation [mean height of plants 25.7 m, diameter at breast height (dbh) 33 cm] and a pinewood forest mainly composed of Pinus pinea L.
View Article and Find Full Text PDF