Compartmentalized biochemical reactions are a ubiquitous building block of biological systems. The interplay between chemical and compartmental dynamics can drive rich and complex dynamical behaviors that are difficult to analyze mathematically - especially in the presence of stochasticity. We have recently proposed an effective moment equation approach to study the statistical properties of compartmentalized biochemical systems.
View Article and Find Full Text PDFCorrect nervous system development depends on the timely differentiation of progenitor cells into neurons. While the output of progenitor differentiation is well investigated at the population and clonal level, how stereotypic or variable fate decisions are during development is still more elusive. To fill this gap, we here follow the fate outcome of single neurogenic progenitors in the zebrafish retina over time using live imaging.
View Article and Find Full Text PDFIn eukaryotes, DNA is packed inside the cell nucleus in the form of chromatin, which consists of DNA, proteins such as histones, and RNA. Euchromatin, which is permissive for transcription, is spatially organized into transcriptionally inactive domains interspersed with pockets of transcriptional activity. While transcription and RNA have been implicated in euchromatin organization, it remains unclear how their interplay forms and maintains transcription pockets.
View Article and Find Full Text PDF