The emerging technique of mid-infrared optical coherence tomography (MIR-OCT) takes advantage of the reduced scattering of MIR light in various materials and devices, enabling tomographic imaging at deeper penetration depths. Because of challenges in MIR detection technology, the image acquisition time is, however, significantly longer than for tomographic imaging methods in the visible/near-infrared. Here we demonstrate an alternative approach to MIR tomography with high-speed imaging capabilities.
View Article and Find Full Text PDFWe introduce techniques for probing the dynamics of triplet states. We employ these tools, along with conventional techniques, to develop a detailed understanding of a complex chemical system: a negative-tone, radical photoresist for multiphoton absorption polymerization in which isopropylthioxanthone (ITX) is the photoinitiator. This work reveals that the same color of light used for the 2-photon excitation of ITX, leading to population of the triplet manifold through intersystem crossing, also depletes this triplet population via linear absorption followed by reverse intersystem crossing (RISC).
View Article and Find Full Text PDFTwo-photon polymerization direct laser writing (TPP-DLW) is one of the most versatile technologies to additively manufacture complex parts with nanoscale resolution. However, the wide range of mechanical properties that results from the chosen combination of multiple process parameters imposes an obstacle to its widespread use. Here we introduce a thermal post-curing route as an effective and simple method to increase the mechanical properties of acrylate-based TPP-DLW-derived parts by 20-250% and to largely eliminate the characteristic coupling of processing parameters, material properties and part functionality.
View Article and Find Full Text PDFThis publisher's note contains corrections to Opt. Lett.45, 13 (2020).
View Article and Find Full Text PDF3D meso scale structures that can reach up to centimeters in overall size but retain micro- or nano-features, proved to be promising in various science fields ranging from micro-mechanical metamaterials to photonics and bio-medical scaffolds. In this work, we present synchronization of the linear and galvanometric scanners for efficient femtosecond 3D optical printing of objects at the meso-scale (from sub-μm to sub-cm spanning five orders of magnitude). In such configuration, the linear stages provide stitch-free structuring at nearly limitless (up to tens-of-cm) working area, while galvo-scanners allow to achieve translation velocities in the range of mm/s-cm/s without sacrificing nano-scale positioning accuracy and preserving the undistorted shape of the final print.
View Article and Find Full Text PDFMicrofabrication by two-photon polymerization is investigated using resins based on thiol-ene chemistry. In particular, resins containing different amounts of a tetrafunctional acrylic monomer and a tetrafunctional thiol molecule are used to create complex microstructures. We observe the enhancement of several characteristics of two-photon polymerization when using thiol-acrylic resins.
View Article and Find Full Text PDFIn this study, the degree of conversion (DC) of an acrylic-based resin (IP-L 780) in two-photon polymerization (TPP) is systematically investigated via Raman microspectroscopy. A quantitative relationship between TPP laser parameters and the DC of the resin is established. Nonlinear increase in DC with increased laser average power is observed.
View Article and Find Full Text PDFWe describe fabrication of microstructures by two-photon polymerization using bursts of femtosecond laser pulses. With the aid of an acousto-optic modulator driven by a function generator, two-photon polymerization is performed at variable burst repetition rates. We investigate how the time between the bursts of laser pulses influences the ultimate dimensions of lines written in a photosensitive resin.
View Article and Find Full Text PDFWe demonstrate in situ and real time characterization of two-photon polymerization (TPP) by means of broadband coherent anti-Stokes Raman scattering (CARS) microscopy. The same experimental setup based on one femtosecond oscillator is used to perform both TPP and broadband CARS microscopy. We performed in situ imaging with chemical specificity of three-dimensional microstructures fabricated by TPP, and successfully followed the writing process in real time.
View Article and Find Full Text PDFWe demonstrate the possibility to image microstructures fabricated by two-photon polymerization (TPP) using coherent anti-Stokes Raman scattering (CARS) microscopy. The imaging contrast based on chemical selectivity attained by CARS microscopy is used to gather qualitative information on TPP. Upon the basis of detailed knowledge of the characteristic signatures of the photoresist Raman spectrum, quantitative relationships between laser writing conditions and polymer cross-linking are demonstrated.
View Article and Find Full Text PDFWe present a comparative study of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging in turbid media at 800- and 1300-nm excitation. The depth-dependent decay of TPEF and SHG signals in turbid tissue phantoms is used to estimate the impact of light scattering on excitation intensity at each wavelength. A 50 to 80% increase in scattering length is observed using 1300-nm excitation, while peak TPEF emission intensity is obtained 10 to 20 microm beneath the surface for both sources.
View Article and Find Full Text PDFChemical and physical processes driven by multiphoton absorption make possible the fabrication of complex, 3D structures with feature sizes as small as 100 nm. Since its inception less than a decade ago, the field of multiphoton fabrication has progressed rapidly, and multiphoton techniques are now being used to create functional microdevices. In this Review we discuss the techniques and materials used for multiphoton fabrication, the applications that have been demonstrated, as well as those being pursued.
View Article and Find Full Text PDFWe present a simple method for fabricating superhydrophobic silicon surfaces. The method consists of irradiating silicon wafers with femtosecond laser pulses and then coating the surfaces with a layer of fluoroalkylsilane molecules. The laser irradiation creates a surface morphology that exhibits structure on the micro- and nanoscale.
View Article and Find Full Text PDFWe report a novel and efficient method for the laser direct writing of two-dimensional silver structures. Multiphoton absorption of a small fraction of the output of a Ti:sapphire oscillator is sufficient to photoreduce silver nitrate in a thin film of polyvinylpyrrolidone that has been spin-coated on a substrate. The polymer can then be washed away, leaving a pattern consisting of highly interconnected silver nanoparticles.
View Article and Find Full Text PDF