Publications by authors named "Tommasi T"

Apples are among the most commonly cultivated fruits globally. Approximately 65% of annual apple production is transformed into apple juice concentrate generating a large amount of waste material named apple pomace, which includes seeds, skin, and other components. Disposing of apple by-products directly into the environment constitutes a source of environmental pollution due to its high-water content and easily fermentable nature.

View Article and Find Full Text PDF
Article Synopsis
  • Microplastics and microfibers are tiny plastic bits that are causing big environmental problems in oceans.
  • Researchers have created a new, easy way to count and analyze these particles without complicated steps like washing or heating.
  • They tested this new method in areas around Naples, Italy, to see how common these plastic bits are in both sea and land sediments.
View Article and Find Full Text PDF

The state of the art in violence detection in videos has improved in recent years thanks to deep learning models, but it is still below 90% of average precision in the most complex datasets, which may pose a problem of frequent false alarms in video surveillance environments and may cause security guards to disable the artificial intelligence system. In this study, we propose a new neural network based on Vision Transformer (ViT) and Neural Structured Learning (NSL) with adversarial training. This network, called CrimeNet, outperforms previous works by a large margin and reduces practically to zero the false positives.

View Article and Find Full Text PDF
Article Synopsis
  • The amount of garbage produced around the world has gone up by 60% recently.
  • Burning this garbage (called incineration) helps reduce its size and can also create energy, but it produces hazardous ashes that can harm the environment.
  • A new study shows a way to safely turn these ashes into useful glass-like materials using a process called vitrification, which is better for the environment when using certain types of materials.
View Article and Find Full Text PDF

In this work, the co-immobilization of formate dehydrogenase (FDH) and glycerol dehydrogenase (GlyDH) enzymes is proposed to reduce CO into formic acid, an important chemical intermediate. The reduction of carbon dioxide is carried out by FDH to obtain formic acid, simultaneously, the GlyDH regenerated the nicotinamide cofactor in the reduced form (NADH) by the oxidation of glycerol into dihydroxyacetone. Natural zeolite was selected as immobilization support given its good properties and low cost.

View Article and Find Full Text PDF

The present work explains a practical and simple method to calculate the gas changing time of anaerobic systems. It is substantiated under the physics of gas-liquid transfer theory and allows researchers to obtain an approximate value of gas changing time with few measurements of the gas composition in the outlet of the reactor. The only analytical equipment required is a gas analyzer, and calculations can be done using a spreadsheet.

View Article and Find Full Text PDF

This study presents the immobilization with aldehyde groups (glyoxyl carbon felt) of alcohol dehydrogenase (ADH) and formate dehydrogenase (FDH) on carbon-felt-based electrodes. The compatibility of the immobilization method with the electrochemical application was studied with the ADH bioelectrode. The electrochemical regeneration process of nicotinamide adenine dinucleotide in its oxidized form (NAD ), on a carbon felt surface, has been deeply studied with tests performed at different electrical potentials.

View Article and Find Full Text PDF

The aim of this study is the evaluation of the environmental sustainability by means of Life Cycle Assessment (LCA) and economic profitability through Life Cycle Costing (LCC) of the 18 anaerobic digestion (AD) configurations carried out on Organic Fraction Municipal Solid Waste (OFMSW) at three Substrate Inoculum (S:I) ratios (1:2, 1:1 and 2:1) for three different inoculum incubation times (0, 5 and 10 d). The adopted approach was the eco-efficiency perspective, coming from the combination of technical, environmental (LCA) and economic (LCC) perspectives. The main findings of the study were that increasing both the S:I ratio and the inoculum incubation time (5 and 10 d) the environmental impacts decreased, and economic profitability increased.

View Article and Find Full Text PDF

Human adaptability relies crucially on learning and merging knowledge from both supervised and unsupervised tasks: the parents point out few important concepts, but then the children fill in the gaps on their own. This is particularly effective, because supervised learning can never be exhaustive and thus learning autonomously allows to discover invariances and regularities that help to generalize. In this paper we propose to apply a similar approach to the problem of object recognition across domains: our model learns the semantic labels in a supervised fashion, and broadens its understanding of the data by learning from self-supervised signals on the same images.

View Article and Find Full Text PDF

This work studied the influence of the pore size and morphology of the mesoporous silica as support for formate dehydrogenase (FDH), the first enzyme of a multi-enzymatic cascade system to produce methanol, which catalyzes the reduction of carbon dioxide to formic acid. Specifically, a set of mesoporous silicas was modified with glyoxyl groups to immobilize covalently the FDH obtained from Candida boidinii. Three types of mesoporous silicas with different textural properties were synthesized and used as supports: i) SBA-15 (D = 4 nm); ii) MCF with 0.

View Article and Find Full Text PDF

Wastewater production is rising all over the world and one of the most difficult problems is the disposal of sewage sludge (SS). It is known that SS contains certain quantities of added-value compounds, such as humic acids (HA) which in turn have beneficial effects on soil quality and plant growth. On the other hand, SS can retain many pollutants, such as heavy metals.

View Article and Find Full Text PDF

Anaerobic digestates from sewage sludge (SSADs) are a by-product of the wastewater treatment process that still preserves a certain agronomic interest for its richness in plant nutrients and organic matter. Fertilizing properties of two liquid and two dewatered SSADs were tested on tomato plants (Solanum lycopersicum L.).

View Article and Find Full Text PDF

Sewage sludge production in European countries has widely raised in the last decade and its fate is currently landfilling, incinerators, composting or land application. To explore its agronomic potential, the main target of this work is to understand the effects of anaerobic digestates from sewage sludge (SSAD). To this aim, four different SSADs (two liquids and two dewatered) were characterized.

View Article and Find Full Text PDF

Extra virgin olive-oil (EVO) production is an important economic activity for several countries, especially in the Mediterranean area such as Spain, Italy, Greece and Tunisia. The two major by-products from olive oil production, solid-liquid Olive Pomace (OP) and the Olive Mill Waste Waters (OMWW), are still mainly disposed on soil, in spite of the existence of legislation which already limits this practice. The present study compares the environmental impacts associated with two different scenarios for the management of waste from olive oil production through a comparative Life Cycle Assessment (LCA).

View Article and Find Full Text PDF

The characterization of anodic microbial communities is of great importance in the study of microbial fuel cells (MFCs). These kinds of devices mainly require a high abundance of anode respiring bacteria (ARB) in the anode chamber for optimal performance. This study evaluated the effect of different enrichments of environmental freshwater sediment samples used as inocula on microbial community structures in MFCs.

View Article and Find Full Text PDF

This paper focuses on the long term operation and testing of three Microbial Fuel Cells (MFC) having three different anode materials: commercial carbon felt (C-FELT), polyaniline-deposited carbon felt (C-PANI) and carbon-coated Berl saddles (C-SADDLES). A mixed consortium from seawater was used as inoculum and acetate was used as substrate. Tests were conducted for four months under 1000Ω external load.

View Article and Find Full Text PDF

Three different single-lumen double-J ureteral stents of different materials were studied and compared after the insertion into a dynamic in vitro model with sterile artificial urine up to 6 months. The aim was to evaluate, at selected time steps of 1, 3, and 6 months, the material performances of the stents in preventing the formation of inorganic encrustations. Morphological, compositional, and qualitative analyses were carried out both before stent insertion and after stent permanence for the different time steps, showing an increasing level of encrustation which remains particularly low in the case of two polyurethane stents.

View Article and Find Full Text PDF

For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system.

View Article and Find Full Text PDF

Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis.

View Article and Find Full Text PDF

In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency.

View Article and Find Full Text PDF

A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5 months (from 7 to 4 μW cm(-2)), while the saddle-based MFC exceeds 9 μW cm(-2) (after 2 months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance.

View Article and Find Full Text PDF

Learning a visual object category from few samples is a compelling and challenging problem. In several real-world applications collecting many annotated data is costly and not always possible. However, a small training set does not allow to cover the high intraclass variability typical of visual objects.

View Article and Find Full Text PDF

The present study is aimed to test the effectiveness and the reproducibility of the acid pre-treatment of sewage sludge to suppress the methanogenic bacteria activity, in order to increase the hydrogen forming bacteria activity, mainly Clostridium species. The treated sludge has been tested on glucose reach medium under mesophilic conditions (35 degrees C), in batch mode to quantify the biological fermentative hydrogen production. In the whole series of experiments, the main components of biogas are hydrogen (52-60%) and carbon dioxide (40-48%); no methane and hydrogen sulphide were present in it.

View Article and Find Full Text PDF

Skin cancer is a spreading disease in the western world. Early detection and treatment are crucial for improving the patient survival rate. In this paper we present two algorithms for computer assisted diagnosis of melanomas.

View Article and Find Full Text PDF