The holy grail of materials science is de novo molecular design, meaning engineering molecules with desired characteristics. The introduction of generative deep learning has greatly advanced efforts in this direction, yet molecular discovery remains challenging and often inefficient. Herein we introduce GaUDI, a guided diffusion model for inverse molecular design that combines an equivariant graph neural net for property prediction and a generative diffusion model.
View Article and Find Full Text PDFIn this work, interpretable deep learning was used to identify structure-property relationships governing the HOMO-LUMO gap and the relative stability of polybenzenoid hydrocarbons (PBHs) using a ring-based graph representation. This representation was combined with a subunit-based perception of PBHs, allowing chemical insights to be presented in terms of intuitive and simple structural motifs. The resulting insights agree with conventional organic chemistry knowledge and electronic structure-based analyses and also reveal new behaviors and identify influential structural motifs.
View Article and Find Full Text PDFDevelopment of resistance to chemo- and immunotherapies often occurs following treatment of melanoma brain metastasis (MBM). The brain microenvironment (BME), particularly astrocytes, cooperate toward MBM progression by upregulating secreted factors, among which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, were overexpressed in MBM compared with primary lesions. Among other sources of MCP-1 in the brain, we show that melanoma cells altered astrocyte secretome and evoked MCP-1 expression and secretion, which in turn induced CCR2 expression in melanoma cells, enhancing in vitro tumorigenic properties, such as proliferation, migration, and invasion of melanoma cells.
View Article and Find Full Text PDFThe arrangement of objects into a layout can be challenging for non-experts, as is affirmed by the existence of interior design professionals. Recent research into the automation of this task has yielded methods that can synthesize layouts of objects respecting aesthetic and functional constraints that are non-linear and competing. These methods usually adopt a stochastic optimization scheme, which samples from different layout configurations, a process that is slow and inefficient.
View Article and Find Full Text PDF