Publications by authors named "Tomer Cohen"

We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target.

View Article and Find Full Text PDF

Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging.

View Article and Find Full Text PDF

Antibodies are a rapidly growing class of therapeutics. Recently, single domain camelid VHH antibodies, and their recognition nanobody domain (Nb) appeared as a cost-effective highly stable alternative to full-length antibodies. There is a growing need for high-throughput epitope mapping based on accurate structural modeling of the variable domains that share a common fold and differ in the Complementarity Determining Regions (CDRs).

View Article and Find Full Text PDF

Interventions against variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Stable and potent nanobodies (Nbs) that target the receptor binding domain (RBD) of SARS-CoV-2 spike are promising therapeutics. However, it is unknown if Nbs broadly neutralize circulating variants.

View Article and Find Full Text PDF

There is an urgent need to develop effective interventions resistant to the evolving variants of SARS-CoV-2. Nanobodies (Nbs) are stable and cost-effective agents that can be delivered by novel aerosolization route to treat SARS-CoV-2 infections efficiently. However, it remains unknown if they possess broadly neutralizing activities against the prevalent circulating strains.

View Article and Find Full Text PDF

The ErbB family of tyrosine kinase receptors is a key element in preserving cell growth homeostasis. This family is comprised of four single-transmembrane domain proteins designated ErbB-1-4. Ligand binding initiates dimerization followed by tyrosine phosphorylation and signaling, which when uncontrolled lead to cancer.

View Article and Find Full Text PDF

To thrive in the human body, HIV fuses to its target cell and evades the immune response via several mechanisms. The fusion cascade is initiated by the fusion peptide (FP), which is located at the N-terminal of gp41, the transmembrane protein of HIV. Recently, it has been shown that the HIV-1 FP, particularly its 5-13 amino acid region (FP(5-13)), suppresses T-cell activation and interacts with the transmembrane domain (TMD) of the T-cell receptor (TCR) complex.

View Article and Find Full Text PDF

Viruses have evolved several strategies to modify cellular processes and evade the immune response in order to successfully infect, replicate, and persist in the host. By utilizing in-silico testing of a transmembrane sequence library derived from virus protein sequences, we have pin-pointed a nine amino-acid motif shared by a group of different viruses; this motif resembles the transmembrane domain of the alpha-subunit of the T-cell receptor (TCRalpha). The most striking similarity was found within the immunodeficiency virus (SIV and HIV) glycoprotein 41 TMD (gp41 TMD).

View Article and Find Full Text PDF

One of the most extensively studied receptor tyrosine kinases is EGFR/ErbB1. Although our knowledge of the role of the extracellular domains and ligands in ErbB1 activation has increased dramatically based on solved domain structures, the exact mechanism of signal transduction across the membrane remains unknown. The transmembrane domains are expected to play an important role in the dimerization process, but the contribution of ErbB1 TM domain to dimer stability is not known, with published results contradicting one another.

View Article and Find Full Text PDF

HIV infection is initiated by the fusion of the viral membrane with the target T-cell membrane. The HIV envelope glycoprotein, gp41, contains a fusion peptide (FP) in the N terminus that functions together with other gp41 domains to fuse the virion with the host cell membrane. We recently reported that FP co-localizes with CD4 and T-cell receptor (TCR) molecules, co-precipitates with TCR, and inhibits antigen-specific T-cell proliferation and pro-inflammatory cytokine secretion.

View Article and Find Full Text PDF

We describe the construction of enzymatic nanoreactors through noncovalent envelopment of a glycoprotein by amphiphilic linear-dendritic AB or ABA copolymers. The synthetic procedure is based on the regioselective adsorption of dendritic poly(benzyl ether)-block-linear poly(ethylene glycol)-block-dendritic poly(benzyl ether) or linear poly(ethylene oxide)-block-dendritic poly(benzyl ether) copolymers onto the oxidative enzyme laccase from Trametes versicolor in aqueous medium. The complexes formed have improved catalytic activity compared with the native enzyme (77-85 nkat/mL vs 60 nkat/mL, respectively) and are more stable at elevated temperatures up to 70 degrees C.

View Article and Find Full Text PDF

Fusion peptide (FP) of the HIV gp41 molecule inserts into the T cell membrane during virus-cell fusion. FP also blocks the TCR/CD3 interaction needed for antigen-triggered T cell activation. Here we used in vitro (fluorescence and immunoprecipitation), in vivo (T cell mediated autoimmune disease adjuvant arthritis), and in silico methods to identify the FP-TCR novel interaction motif: the alpha-helical transmembrane domain (TMD) of the TCR alpha chain, and the beta-sheet 5-13 region of the 16 N-terminal aa of FP (FP(1-16)).

View Article and Find Full Text PDF

Gaining insight into the mechanism of amyloid fibril formation, the hallmark of multiple degenerative syndromes of unrelated origin, and exploring novel directions of inhibition are crucial for preventing disease development. Specific interactions between aromatic moieties were suggested to have a key role in the recognition and self-assembly processes leading to the formation of amyloid fibrils by several amyloidogenic polypeptides, including the beta-amyloid polypeptide associated with Alzheimer's disease. Our finding of the high-affinity molecular recognition and intense amyloidogenic potential of tryptophan-containing peptide fragments led to the hypothesis that screening for indole derivatives might lead to the identification of potential inhibitors of amyloid formation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1favmmj07jtq9lovl5g1j98r78i64jnl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once