Accurate localization of devices within Internet of Things (IoT) networks is driven by the emergence of novel applications that require context awareness to improve operational efficiency, resource management, automation, and safety in industry and smart cities. With the Integrated Localization and Communication (ILAC) functionality, IoT devices can simultaneously exchange data and determine their position in space, resulting in maximized resource utilization with reduced deployment and operational costs. Localization capability in challenging scenarios, including harsh environments with complex geometry and obstacles, can be provided with robust, reliable, and energy-efficient communication protocols able to combat impairments caused by interference and multipath, such as the IEEE 802.
View Article and Find Full Text PDFThe integration of infectious disease modeling with the data collection process is crucial to reach its maximum potential, and remains a significant research challenge. Ensuring a solid empirical foundation for models used to fill gaps in data and knowledge is of paramount importance. Personal wireless devices, such as smartphones, smartwatches and wireless bracelets, can serve as a means of bridging the gap between empirical data and the mathematical modeling of human contacts and networking.
View Article and Find Full Text PDFThe LOG-a-TEC testbed is a combined outdoor and indoor heterogeneous wireless testbed for experimentation with sensor networks and machine-type communications, which is included within the Fed4FIRE+ federation. It supports continuous deployment principles; however, it is missing an option to monitor and control the experiment in real-time, which is required for experiment execution under comparable conditions. The paper describes the implementation of the experiment control and monitoring system (EC and MS) as the upgrade of the LOG-a-TEC testbed.
View Article and Find Full Text PDFThis work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle.
View Article and Find Full Text PDF