Publications by authors named "Tomaz Einfalt"

Lipid nanoparticles (LNPs) have emerged as the leading nonviral nucleic acid (NA) delivery system, gaining widespread attention for their use in COVID-19 vaccines. They are recognized for their efficient NA encapsulation, modifiability, and scalable production. However, LNPs face efficacy and potency limitations due to suboptimal intracellular processing, with endosomal escape efficiencies (ESE) below 2.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are highly interesting for the design of next-generation therapeutics. However, their preparation methods face challenges in standardization, yield, and reproducibility. Here, we describe a highly efficient and reproducible EV preparation method for monodisperse nano plasma membrane vesicles (nPMVs), which yields 10 to 100 times more particles per cell and hour than conventional EV preparation methods.

View Article and Find Full Text PDF

The essential homeostatic process of dead cell clearance (efferocytosis) is used by viruses in an act of apoptotic mimicry. Among others, virions leverage phosphatidylserine (PS) as an essential "eat me" signal in viral envelopes to increase their infectivity. In a virus-inspired biomimetic approach, we demonstrate that PS can be incorporated into non-viral lipid nanoparticle (LNP) pDNA/mRNA constructs to enhance cellular transfection.

View Article and Find Full Text PDF

There is an increasing interest in cationic polymers as important constituents of non-viral gene delivery vectors. In the present study, we developed a versatile synthetic route for the production of covalent polymeric conjugates consisting of water-soluble depolymerized chitosan (dCS; M 6-9 kDa) and low molecular weight polyethylenimine (PEI; 2.5 kDa linear, 1.

View Article and Find Full Text PDF

Cellular model systems are essential platforms used across multiple research fields for exploring the fundaments of biology and biochemistry. Here, we present giant plasma membrane vesicles (GPMVs) as a platform of cell-like compartments that will facilitate the study of particles within a biorelevant environment and promote their further development. We studied how cellularly taken up nanoparticles (NPs) can be transferred into formed GPMVs and which are the molecular factors that play a role in successful transfer (size, concentration, and surface charge along with 3 different cell lines: HepG2, HeLa, and Caco-2).

View Article and Find Full Text PDF

Metal-based nanoparticles are clinically used for diagnostic and therapeutic applications. After parenteral administration, they will distribute throughout different organs. Quantification of their distribution within tissues in the 3D space, however, remains a challenge owing to the small particle diameter.

View Article and Find Full Text PDF

DNA has been widely used as a key tether to promote self-organization of super-assemblies with emergent properties. However, control of this process is still challenging for compartment assemblies and to date the resulting assemblies have unstable membranes precluding in vitro and in vivo testing. Here we present our approach to overcome these limitations, by manipulating molecular factors such as compartment membrane composition and DNA surface density, thereby controlling the size and stability of the resulting DNA-linked compartment clusters.

View Article and Find Full Text PDF

Despite huge need in the medical domain and significant development efforts, artificial cells to date have limited composition and functionality. Although some artificial cells have proven successful for producing therapeutics or performing in vitro specific reactions, they have not been investigated in vivo to determine whether they preserve their architecture and functionality while avoiding toxicity. Here, these limitations are overcome and customizable cell mimic is achieved-molecular factories (MFs)-by supplementing giant plasma membrane vesicles derived from donor cells with nanometer-sized artificial organelles (AOs).

View Article and Find Full Text PDF

Hepatocellular carcinoma is the most common type of primary malignancy in the liver and one of the most common types of cancer worldwide. Its readily increasing mortality rate highlights the urgent need for the development of efficient therapeutic strategies. Tyrosine kinase inhibitors (TKIs) such as sorafenib and sunitinib are used as efficient angiogenesis inhibitors for this purpose.

View Article and Find Full Text PDF

Active targeting and specific drug delivery to parenchymal liver cells is a promising strategy to treat various liver disorders. Here, we modified synthetic lipid-based nanoparticles with targeting peptides derived from the hepatitis B virus large envelope protein (HBVpreS) to specifically target the sodium-taurocholate cotransporting polypeptide (NTCP; ) on the sinusoidal membrane of hepatocytes. Physicochemical properties of targeted nanoparticles were optimized and NTCP-specific, ligand-dependent binding and internalization was confirmed in vitro.

View Article and Find Full Text PDF

Compartmentalization of functional biological units, cells, and organelles serves as an inspiration for the development of biomimetic materials with unprecedented properties and applications in biosensing and medicine. Because of the complexity of cells, the design of ideal functional materials remains a challenge. An elegant strategy to obtain cell-like compartments as novel materials with biofunctionality is the combination of synthetic micrometer-sized giant unilamellar vesicles (GUVs) with biomolecules because it enables studying the behavior of biomolecules and processes within confined cavities.

View Article and Find Full Text PDF

We describe an innovative strategy to generate catalytic compartments with triggered functionality at the nanoscale level by combining pH-reversible biovalves and enzyme-loaded synthetic compartments. The biovalve has been engineered by the attachment of stimuli-responsive peptides to a genetically modified channel porin, enabling a reversible change of the molecular flow through the pores of the porin in response to a pH change in the local environment. The biovalve functionality triggers the reaction inside the cavity of the enzyme-loaded compartments by switching the in situ activity of the enzymes on/off based on a reversible change of the permeability of the membrane, which blocks or allows the passage of substrates and products.

View Article and Find Full Text PDF

Injectable products are often the formulation of choice for new therapeutics; however, formulation in liquids often enhances degradation through hydrolysis. Thus, freeze-drying (lyophilization) is regularly used in pharmaceutical manufacture to reduce water activity. Here we examine its contribution to 'state of the art' and look at its future potential uses.

View Article and Find Full Text PDF

Designing nanocarriers to release proteins under specific conditions is required to improve therapeutic approaches, especially in treating cancer and protein deficiency diseases. We present here supramolecular assemblies based on asymmetric poly(ethylene glycol)-b-poly(methylcaprolactone)-b-poly(2-(N,Ndiethylamino)ethyl methacrylate) (PEG-b-PMCL-b-PDMAEMA) copolymers for controlled localization and pH-sensitive release of proteins. Copolymers self-assembled in soft nanoparticles with a core domain formed by PMCL, and a hydrophilic domain based on PEG mainly embedded inside, and the branched PDMAEMA exposed at the particle surface.

View Article and Find Full Text PDF

Reactions inside confined compartments at the nanoscale represent an essential step in the development of complex multifunctional systems to serve as molecular factories. In this respect, the biomimetic approach of combining biomolecules (proteins, enzymes, mimics) with synthetic membranes is an elegant way to create functional nanoreactors, or even simple artificial organelles, that function inside cells after uptake. Functionality is provided by the specificity of the biomolecule(s), whilst the synthetic compartment provides mechanical stability and robustness.

View Article and Find Full Text PDF

We introduce active surfaces generated by immobilizing protein-polymer nanoreactors on a solid support for sensitive sugar alcohols detection. First, such selective nanoreactors were engineered in solution by simultaneous encapsulation of specific enzymes in copolymer polymersomes, and insertion of membrane proteins for selective conduct of sugar alcohols. Despite the artificial surroundings, and the thickness of the copolymer membrane, functionality of reconstituted Escherichia coli glycerol facilitator (GlpF) was preserved, and allowed selective diffusion of sugar alcohols to the inner cavity of the polymersome, where encapsulated ribitol dehydrogenase (RDH) enzymes served as biosensing entities.

View Article and Find Full Text PDF

The development of advanced stimuli-responsive systems for medicine, catalysis, or technology requires compartmentalized reaction spaces with triggered activity. Only very few stimuli-responsive systems preserve the compartment architecture, and none allows a triggered activity in situ. We present here a biomimetic strategy to molecular transmembrane transport by engineering synthetic membranes equipped with channel proteins so that they are stimuli-responsive.

View Article and Find Full Text PDF