Publications by authors named "Tomaz Bratkovic"

Polysorbate (PS) degradation in monoclonal antibody (mAb) formulations poses a significant challenge in the biopharmaceutical industry. PS maintains protein stability during drug product's shelf life but is vulnerable to breakdown by low-abundance residual host cell proteins (HCPs), particularly hydrolytic enzymes such as lipases and esterases. In this study, we used activity-based protein profiling (ABPP) coupled with mass spectrometry to identify acyl-protein thioesterase-1 (APT-1) as a polysorbate-degrading HCP in one case of mAb formulation with stability problems.

View Article and Find Full Text PDF

causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option.

View Article and Find Full Text PDF

The Chinese hamster ovary (CHO) cell line is a well-established platform for the production of biopharmaceuticals due to its ability to express complex therapeutic proteins with human-like glycopatterns in high amounts. The advent of CRISPR technology has opened up new avenues for the engineering of CHO cell lines for improved protein production and enhanced product quality. This review summarizes recent advances in the application of CRISPR technology for CHO cell line engineering with a particular focus on glycosylation modulation, productivity enhancement, tackling adventitious agents, elimination of problematic host cell proteins, development of antibiotic-free selection systems, site-specific transgene integration, and CRISPR-mediated gene activation and repression.

View Article and Find Full Text PDF

Background: Endothelin (ET)-traps are Fc-fusion proteins with a design based on the physiological receptors of ET-1. Previous work has shown that use of the selected ET-traps potently and significantly reduces different markers of diabetes pathology back to normal, non-disease levels.

Aim: To demonstrate the selected ET-traps potently and significantly bind to ET-1.

View Article and Find Full Text PDF

Phage display coupled with in vitro affinity selection to mimic evolutionary principles has propelled the discovery of specific binding peptides and proteins for diverse applications, including affinity chromatography. By tailoring screening conditions, ligands with desired predefined properties, such as pH- or ion strength-responsive binding, can be identified from phage-displayed combinatorial peptide libraries. Initial hit peptides can be further optimized through directed evolution by focused mutagenesis and rescreening.

View Article and Find Full Text PDF

Modern anticancer therapies favor a targeted approach. Tyrosine kinase inhibitors (TKIs) are drugs that target molecular pathways involved in various types of malignancies. Although TKIs are safe and well tolerated, they remain not completely selective; e.

View Article and Find Full Text PDF

The abundance of polyphenols in edible plants makes them an important component of human nutrition. Considering the ongoing COVID-19 pandemic, a number of studies have investigated polyphenols as bioactive constituents. We applied in-silico molecular docking as well as molecular dynamics supported by in-vitro assays to determine the inhibitory potential of various plant polyphenols against an important SARS-CoV-2 therapeutic target, the protease 3CL.

View Article and Find Full Text PDF
Article Synopsis
  • Affinity chromatography is essential for antibody processing, often using expensive, unstable protein A ligands which can deteriorate over time.
  • Innovations focus on creating durable and selective ligands that can endure rigorous sanitization processes in chromatography.
  • A novel peptide ligand derived from in vitro directed evolution shows high affinity for all four IgG subclasses, matching the binding capacity of traditional protein A resins.
View Article and Find Full Text PDF
Article Synopsis
  • IDO1 is an emerging target for immunotherapy in conditions like cancer, prompting the synthesis of new inhibitors based on a unique isoxazolo[5,4-]pyrimidin-4(5)-one structure.
  • A focused library was created using 6- to 7-step synthetic methods to explore the structure-activity relationships of these inhibitors.
  • The best inhibitors, featuring various aniline substitutions, showed low micromolar IC values and were selective for hIDO1, highlighting their potential as chemical probes for developing effective small-molecule immunomodulators.
View Article and Find Full Text PDF

The sheer size and vast chemical space (i.e., diverse repertoire and spatial distribution of functional groups) underlie peptides' ability to engage in specific interactions with targets of various structures.

View Article and Find Full Text PDF

DNA gyrase and topoisomerase IV are essential bacterial enzymes, and in the fight against bacterial resistance, they are important targets for the development of novel antibacterial drugs. Building from our first generation of 4,5,6,7-tetrahydrobenzo[]thiazole-based DNA gyrase inhibitors, we designed and prepared an optimized series of analogs that show improved inhibition of DNA gyrase and topoisomerase IV from and , with IC values in the nanomolar range. Importantly, these inhibitors also show improved antibacterial activity against Gram-positive strains.

View Article and Find Full Text PDF

Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin.

View Article and Find Full Text PDF

Small nucleolar RNAs (snoRNAs) are short non-protein-coding RNAs with a long-recognized role in tuning ribosomal and spliceosomal function by guiding ribose methylation and pseudouridylation at targeted nucleotide residues of ribosomal and small nuclear RNAs, respectively. SnoRNAs are increasingly being implicated in regulation of new types of post-transcriptional processes, for example rRNA acetylation, modulation of splicing patterns, control of mRNA abundance and translational efficiency, or they themselves are processed to shorter stable RNA species that seem to be the principal or alternative bioactive isoform. Intriguingly, some display unusual cellular localization under exogenous stimuli, or tissue-specific distribution.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are focusing on enhancing affinity chromatography for therapeutic antibodies by developing new, more durable ligands that can endure tough cleaning methods while still effectively binding antibodies.
  • The study introduced a linear peptide ligand derived from phage-display libraries, which competes with the commonly used staphylococcal protein A for binding to the IgG Fc region.
  • An optimized version of the peptide (GSYWYDVWF) demonstrated significantly improved binding affinity and effectively separated antibodies from complex mixtures when attached to beads or chromatography systems.
View Article and Find Full Text PDF

The serotonin neurotransmitter system is widespread in the brain and implicated in modulation of neuronal responses to other neurotransmitters. Among 14 serotonin receptor subtypes, 5-HT2cR plays a pivotal role in controlling neuronal network excitability. Serotonergic activity conveyed through receptor 5-HT2cR is regulated post-transcriptionally via two mechanisms, alternative splicing and A-to-I RNA editing.

View Article and Find Full Text PDF
Article Synopsis
  • The demand for recombinant therapeutic antibodies and Fc-fusion proteins is rising, prompting efforts to enhance downstream processing, particularly through improved affinity chromatography for effective purification.
  • Advances in molecular design and high-throughput screening have led to the emergence of new affinity ligands that serve as alternatives to traditional Ig-binding proteins.
  • This review discusses the development and features of various novel antibody-binding ligands, including engineered Ig-binding proteins, synthetic proteins, peptides, and small molecules, along with their applications in chromatography and other areas.
View Article and Find Full Text PDF

Detailed knowledge of antigenic determinants is crucial when characterizing therapeutic and diagnostic antibodies, assessing vaccine effectiveness and developing epitope-based vaccines. Most epitope mapping approaches are labor intensive and costly. In this study, we evaluated panning of phage-displayed random peptide libraries against antibodies as a tool for cognate epitope identification.

View Article and Find Full Text PDF

Bacteriophages have been exploited as cloning vectors and display vehicles for decades owing to their genetic and structural simplicity. In bipartite display setting, phage takes on the role of a handle to which two modules are attached, each endowing it with specific functionality, much like the Swiss army knife. This concept offers unprecedented potential for phage applications in nanobiotechnology.

View Article and Find Full Text PDF

Initially considered the main endogenous anorexigenic factor, fat-derived leptin turned out to be a markedly pleiotropic hormone, influencing diverse physiological processes. Moreover, hyperleptinemia in obese individuals has been linked to the onset or progression of serious disorders, such as cancer, autoimmune diseases, and atherosclerosis, and antagonizing peripheral leptin's signalization has been shown to improve these conditions. To develop an antibody-based leptin antagonist we have devised a tailored panning procedure and screened two phage display libraries of single chain variable antibody fragments (scFvs) against recombinant leptin receptor.

View Article and Find Full Text PDF

Small nucleolar RNAs (snoRNAs) are a class of evolutionally conserved non-coding RNAs traditionally associated with nucleotide modifications in other RNA species. Acting as guides pairing with ribosomal (rRNA) and small nuclear RNAs (snRNAs), snoRNAs direct partner enzymes to specific sites for uridine isomerization or ribose methylation, thereby influencing stability, folding and protein-interacting properties of target RNAs. In recent years, however, numerous non-canonical functions have also been ascribed to certain members of the snoRNA group, ranging from regulation of mRNA editing and/or alternative splicing to posttranscriptional gene silencing by a yet poorly understood pathway that may involve microRNA-like mechanisms.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) form a large class of non-coding RNAs that function in repression of gene expression in eukaryotes. By recognizing short stretches of nucleotides within the untranslated regions of mRNAs, miRNAs recruit partner proteins to individual transcripts, leading to mRNA cleavage or hindering of translation. Bioinformatic predictions and a wealth of data from wet laboratory studies indicate that miRNAs control expression of a large proportion of protein-coding genes, implying involvement of miRNAs in regulation of most biologic processes.

View Article and Find Full Text PDF

Small nucleolar RNAs (snoRNAs) constitute a group of non-coding RNAs principally involved in posttranscriptional modification of ubiquitously expressed ribosomal and small nuclear RNAs. However, a number of tissue-specific snoRNAs have recently been identified that apparently do not target conventional substrates and are presumed to guide processing of primary transcripts of protein-coding genes, potentially expanding the diapason of regulatory RNAs that control translation of mRNA to proteins. Here, we review biogenesis of snoRNAs and redefine their function in light of recent exciting discoveries.

View Article and Find Full Text PDF

Ligands selected from phage-displayed random peptide libraries tend to be directed to biologically relevant sites on the surface of the target protein. Consequently, peptides derived from library screenings often modulate the target protein's activity in vitro and in vivo and can be used as lead compounds in drug design and as alternatives to antibodies for target validation in both genomics and drug discovery. This review discusses the use of phage display to identify membrane receptor modulators with agonistic or antagonistic activities.

View Article and Find Full Text PDF

Phage display, the presentation of (poly)peptides as fusions to capsid proteins on the surface of bacterial viruses, celebrates its 25th birthday in 2010. The technique, coupled with in vitro selection, enables rapid identification and optimization of proteins based on their structural or functional properties. In the last two decades, it has advanced tremendously and has become widely accepted by the scientific community.

View Article and Find Full Text PDF

Bacterial beta-ketoacyl-[acyl carrier protein] (beta-ketoacyl-ACP) reductase (FabG) is a highly conserved and ubiquitously expressed enzyme of the fatty-acid biosynthetic pathway of prokaryotic organisms that catalyzes NADPH-dependent reduction of beta-ketoacyl-ACP intermediates. Therefore, FabG represents an appealing target for the development of new antimicrobial agents. A number of trans-cinnamic acid derivatives were designed and screened for inhibitory activities against FabG from Escherichia coli.

View Article and Find Full Text PDF