Di-ubiquitin (diUB) conjugates of defined linkages are useful tools for probing the functions of UB ligases, UB-binding proteins and deubiquitinating enzymes (DUBs) in coding, decoding and editing the signals carried by the UB chains. Here we developed an efficient method for linkage-specific synthesis of diUB probes based on the incorporation of the unnatural amino acid (UAA) N -L-thiaprolyl-L-Lys (L-ThzK) into UB for ligation with another UB at a defined Lys position. The diUB formed by the UAA-mediated ligation reaction has a G76C mutation on the side of donor UB for conjugation with E2 and E3 enzymes or undergoing dethiolation to generate a covalent trap for DUBs.
View Article and Find Full Text PDFUbiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation.
View Article and Find Full Text PDFWe have improved the incorporation of l- and d-forms of unnatural amino acid (UAA) N-thiaprolyl-l-lysine (ThzK) into ubiquitin (UB) and green fluorescent protein (GFP) by 2-6 folds with the use of the methylester forms of the UAAs in E coli cell culture. We also improved the yields of UAA-incorporated UB and GFP with the methylester forms of N-Boc-l-Lysine (BocK) and N-propargyl-l-Lysine (PrK) by 2-5 folds compared to their free acid forms. Our work demonstrated that using methylester-capped UAAs for protein expression is a useful strategy to enhance the yields of UAA-incorporated proteins.
View Article and Find Full Text PDF