Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Raman spectroscopy is a powerful and non-invasive analytical method for determining the chemical composition and molecular structure of a wide range of materials, including complex biological tissues. However, the captured signals typically suffer from interferences manifested as noise and baseline, which need to be removed for successful data analysis. Effective baseline correction is critical in quantitative analysis, as it may impact peak signature derivation.
View Article and Find Full Text PDFIntroduction: Production of strawberries in greenhouses and polytunnels is gaining popularity worldwide. This study investigated the effect of reuse of coir and peat, two substrates commonly adapted to soilless strawberry production, as well as stand-alone wood fiber from Norway spruce, a promising substrate candidate.
Methods: The experiment was performed in a polytunnel at NIBIO Apelsvoll, Norway, and evaluated both virgin substrates, as well as spent materials that were used in one or two years.
The resilience of global food security is a critical concern. Facing limited access to land and potential disruption of the food markets, alternative, scalable, and efficient production systems are needed as a complementary buffer for maintenance of food production integrity. The purpose of this study was to introduce an alternative hydroponic potato growing system where potatoes are grown in bare wood fiber as a growing medium.
View Article and Find Full Text PDFIntroduction: Blackcurrant (Ribes nigrum L.) is an excellent example of a "super fruit" with potential health benefits. Both genotype and cultivation environment are known to affect the chemical composition of blackcurrant, especially ascorbic acid and various phenolic compounds.
View Article and Find Full Text PDFBackground: Marked effects of the climatic environment on fruit chemical composition have often been demonstrated in field experiments. However, complex covariations of several climatic factors in the natural environment complicate the interpretation of such experiments and the identification of the causal factors. This can be better achieved in a phytotron where the various climatic factors can be varied systematically.
View Article and Find Full Text PDFThe effects of postflowering temperature and daylength on the concentration of individual phenolic compounds were studied in black currant (Ribes nigrum L.) berries under controlled phytotron conditions. The four cultivars studied varied greatly in their concentrations of individual phenolic compounds and temperature stability for accumulation.
View Article and Find Full Text PDF