Publications by authors named "Tomasz Wasowicz"

The interactions of electrons with molecular systems under various conditions are essential to interdisciplinary research fields extending over the fundamental and applied sciences. In particular, investigating electron-induced ionization and dissociation of molecules may shed light on the radiation damage to living cells, the physicochemical processes in interstellar environments, and reaction mechanisms occurring in combustion or plasma. We have, therefore, studied electron-induced ionization and dissociation of the gas phase 3,4-dihydro-2H-pyran (DHP), a cyclic ether appearing to be a viable moiety for developing efficient clinical pharmacokinetics and revealing the mechanisms of biofuel combustion.

View Article and Find Full Text PDF

The dissociative double photoionization of isoxazole molecules has been investigated experimentally and theoretically. The experiment has been carried out in the 27.5-36 eV photon energy range using vacuum ultraviolet (VUV) synchrotron radiation excitation combined with ion time-of-flight (TOF) spectrometry and photoelectron-photoion-photoion coincidence (PEPIPICO) technique.

View Article and Find Full Text PDF

The interactions of ions with molecules and the determination of their dissociation patterns are challenging endeavors of fundamental importance for theoretical and experimental science. In particular, the investigations on bond-breaking and new bond-forming processes triggered by the ionic impact may shed light on the stellar wind interaction with interstellar media, ionic beam irradiations of the living cells, ion-track nanotechnology, radiation hardness analysis of materials, and focused ion beam etching, deposition, and lithography. Due to its vital role in the natural environment, the pyridine molecule has become the subject of both basic and applied research in recent years.

View Article and Find Full Text PDF

Dissociation of water molecules after soft X-ray absorption can yield neutral fragments in high-Rydberg (HR) states. We have studied the production of such fragments by field ionization and ion time-of-flight (TOF) spectrometry. Neutral HR fragments are created at all resonances below the O 1s ionization potential (IP) and particularly within 1 eV above the O 1s IP.

View Article and Find Full Text PDF

The present work focuses on unraveling the collisional processes leading to the fragmentation of the gas-phase furan molecules under the He and He cations impact in the energy range 5-2000 eV. The presence of different mechanisms was identified by the analysis of the optical fragmentation spectra measured using the collision-induced emission spectroscopy (CIES) in conjunction with the calculations. The measurements of the fragmentation spectra of furan were performed at the different kinetic energies of both cations.

View Article and Find Full Text PDF

We have studied the production of neutral fragments in high-Rydberg (HR) states at the C 1s and O 1s edges of the CO2 molecule by performing two kinds of experiments. First, the yields of neutral HR fragments were measured indirectly by ionizing such fragments in a static electric field and by collecting resulting singly charged positive ions as a function of the photon energy. Such measurements reveal not only excitations below the core ionization thresholds but also thresholds for single core-hole and shakeup photoionization.

View Article and Find Full Text PDF

The ability to selectively control chemical reactions related to biology, combustion, and catalysis has recently attracted much attention. In particular, the hydrogen atom relocation may be used to manipulate bond-breaking and new bond-forming processes and may hold promise for far-reaching applications. Thus, the hydrogen atom migration preceding fragmentation of the gas-phase pyridine molecules by the H(+), H2(+), He(+), He(2+), and O(+) impact has been studied experimentally in the energy range of 5-2000 eV using collision-induced luminescence spectroscopy.

View Article and Find Full Text PDF

We have studied fragmentation processes of the gas-phase tetrahydrofuran (THF) molecules in collisions with the H(+), C(+), and O(+) cations. The collision energies have been varied between 25 and 1000 eV and thus covered a velocity range from 10 to 440 km/s. The following excited neutral fragments of THF have been observed: the atomic hydrogen H(n), n = 4-9, carbon atoms in the 2p3s (1)P1, 2p4p (1)D2, and 2p4p (3)P states and vibrationally and rotationally excited diatomic CH fragments in the A(2)Δ and B(2)Σ(-) states.

View Article and Find Full Text PDF

Formation of the excited NH(A(3)Π) free radicals in the photodissociation of isoxazole (C3H3NO) molecules has been studied over the 14-22 eV energy range using photon-induced fluorescence spectroscopy. The NH(A(3)Π) is produced through excitation of the isoxazole molecules into higher-lying superexcited states. Observation of the NH radical, which is not a structural unit of the isoxazole molecule, corroborates the hydrogen atom (or proton) migration within the molecule prior to dissociation.

View Article and Find Full Text PDF

Background: Ovarian carcinoma is the leading cause of mortality among gynecological cancers in the world. The high mortality rate is associated with lack of early diagnosis and development of drug resistance. The antitumor efficacy and mechanism of NCX-4040, a nitric oxide-releasing aspirin derivative, against ovarian cancer is studied.

View Article and Find Full Text PDF

Electron paramagnetic resonance imaging (EPRI) is a powerful technique that enables spatial mapping of free radicals or other paramagnetic compounds; however, it does not in itself provide anatomic visualization of the body. Proton magnetic resonance imaging (MRI) is well suited to provide anatomical visualization. A hybrid EPR/NMR coimaging instrument was constructed that utilizes the complementary capabilities of both techniques, superimposing EPR and proton-MR images to provide the distribution of paramagnetic species in the body.

View Article and Find Full Text PDF

For whole body EPR imaging of small animals, typically low frequencies of 250-750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy.

View Article and Find Full Text PDF

The Cu(II)- and Co(II)-binding properties of two peptides, designed on the basis of the active site sequence and structure of the blue copper protein plastocyanin, are explored. Peptide BCP-A, Ac-Trp-(Gly)(3)-Ser-Tyr-Cys-Ser-Pro-His-Gln-Gly-Ala-Gly-Met-(Gly )(3)-His-(Gly)(2)-Lys-CONH(2), conserves the Cu-binding loop of plastocyanin containing three of the four copper ligands and has a flexible (Gly)(3) linker to the second His ligand. Peptide BCP-B, Ac-Trp-(Gly)(3)-Cys-Gly-His-Gly-Val-Pro-Ser-His-Gly-Met-Gly-CONH(2), contains all four blue copper ligands, with two on either side of a beta-turn.

View Article and Find Full Text PDF