The effectiveness of digital treatments can be measured by requiring patients to self-report their state through applications, however, it can be overwhelming and causes disengagement. We conduct a study to explore the impact of gamification on self-reporting. Our approach involves the creation of a system to assess cognitive load (CL) through the analysis of photoplethysmography (PPG) signals.
View Article and Find Full Text PDFAccurate prediction of fetal weight at birth is essential for effective perinatal care, particularly in the context of antenatal management, which involves determining the timing and mode of delivery. The current standard of care involves performing a prenatal ultrasound 24 hours prior to delivery. However, this task presents challenges as it requires acquiring high-quality images, which becomes difficult during advanced pregnancy due to the lack of amniotic fluid.
View Article and Find Full Text PDFThe problem of reducing processing time of large deep learning models is a fundamental challenge in many real-world applications. Early exit methods strive towards this goal by attaching additional Internal Classifiers (ICs) to intermediate layers of a neural network. ICs can quickly return predictions for easy examples and, as a result, reduce the average inference time of the whole model.
View Article and Find Full Text PDFThis work investigates the use of deep convolutional neural networks (CNN) to automatically perform measurements of fetal body parts, including head circumference, biparietal diameter, abdominal circumference and femur length, and to estimate gestational age and fetal weight using fetal ultrasound videos.We developed a novel multi-task CNN-based spatio-temporal fetal US feature extraction and standard plane detection algorithm (called FUVAI) and evaluated the method on 50 freehand fetal US video scans. We compared FUVAI fetal biometric measurements with measurements made by five experienced sonographers at two time points separated by at least two weeks.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2022
In this work, we propose a novel method for generating 3D point clouds that leverages the properties of hypernetworks. Contrary to the existing methods that learn only the representation of a 3D object, our approach simultaneously finds a representation of the object and its 3D surface. The main idea of our HyperCloud method is to build a hypernetwork that returns weights of a particular neural network (target network) trained to map points from prior distribution into a 3D shape.
View Article and Find Full Text PDFPurpose: The aim of this study was to verify improved, ensemble-based strategy for inferencing with use of our solution for quantitative assessment of tendons and ligaments healing process and to show possible applications of the method.
Methods: We chose the problem of the Achilles tendon rupture as an example representing a group of common sport traumas. We derived our dataset from 90 individuals and divided it into two subsets: healthy individuals and patients with complete Achilles tendon ruptures.
We propose a novel and general framework to learn compact but highly discriminative floating-point and binary local feature descriptors. By leveraging the boosting-trick we first show how to efficiently train a compact floating-point descriptor that is very robust to illumination and viewpoint changes. We then present the main contribution of this paper-a binary extension of the framework that demonstrates the real advantage of our approach and allows us to compress the descriptor even further.
View Article and Find Full Text PDFFeature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD).
View Article and Find Full Text PDFBinary descriptors are becoming increasingly popular as a means to compare feature points very fast while requiring comparatively small amounts of memory. The typical approach to creating them is to first compute floating-point ones, using an algorithm such as SIFT, and then to binarize them. In this paper, we show that we can directly compute a binary descriptor, which we call BRIEF, on the basis of simple intensity difference tests.
View Article and Find Full Text PDF