Epithelial to mesenchymal transition (EMT) is a biological process involved in tissue morphogenesis and disease that causes dramatic changes in cell morphology, migration, proliferation, and gene expression. The retinal pigment epithelium (RPE), which supports the neural retina, can undergo EMT, producing fibrous epiretinal membranes (ERMs) associated with vision-impairing clinical conditions, such as macular pucker and proliferative vitreoretinopathy (PVR). We found that co-treatment with TGF-β and TNF-α (TNT) accelerates EMT in adult human RPE stem cell-derived RPE cell cultures.
View Article and Find Full Text PDFNaive and primed pluripotency is characterized by distinct signaling requirements, transcriptomes, and developmental properties, but both cellular states share key transcriptional regulators: Oct4, Sox2, and Nanog. Here, we demonstrate that transition between these two pluripotent states is associated with widespread Oct4 relocalization, mirrored by global rearrangement of enhancer chromatin landscapes. Our genomic and biochemical analyses identified candidate mediators of primed state-specific Oct4 binding, including Otx2 and Zic2/3.
View Article and Find Full Text PDFIn addition to their potential for cell-based therapies in the treatment of disease and injury, the broad developmental capacity of human embryonic stem cells (hESCs) offers potential for studying the origins of all human cell types. To date, the emergence of specialized cells from hESCs has commonly been studied in tissue culture or in teratomas, yet these methods have stopped short of demonstrating the ESC potential exhibited in the mouse (mESCs), which can give rise to every cell type when combined with blastocysts. Due to obvious barriers precluding the use of human embryos in similar cell mixing experiments with hESCs, human/non-human chimeras may need to be generated for this purpose.
View Article and Find Full Text PDF