Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature carriers and propose a preprocessing and denoising scheme to make the feature extraction more efficient.
View Article and Find Full Text PDFPurpose: The quality of a measured distribution of dose delivered against its corresponding radiotherapy plan is routinely assessed by gamma index (GI) and dose-volume histogram (DVH) metrics. Any correlation between error detection rates, as based on either of these approaches, while argued, has never been convincingly demonstrated. The dependence of the strength of correlation between the GI passing rate ( ) and DVH quality assurance (QA) metrics on various elements of the therapy plan has not been systematically investigated.
View Article and Find Full Text PDFIn the study, a local approach to setting reference tolerance values for the distance-to-agreement (DTA) component of the gamma index is proposed. The reference tolerance values are calculated in simulations, following a dose delivery model presented in a previous work. An analytical model for determining the quantiles of DTA distribution is also proposed and verified.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) is an important analysis technique with applications in many industrial branches and fields of scientific research. Nowadays, the advantages of LIBS are impaired by the main drawback in the interpretation of obtained spectra and identification of observed spectral lines. This procedure is highly time-consuming since it is essentially based on the comparison of lines present in the spectrum with the literature database.
View Article and Find Full Text PDF