This paper discusses the risks associated with an aerostat-supported stratospheric (unanchored) balloon mission equipped with a long vertical antenna and a very low frequency radio transmitter. The risks have been grouped into four main types and applicable mitigation methods have been presented to provide a sufficient level of safety and reliability to such a balloon mission. An experimental mission consistent with this analysis, based on the described theoretical VLF propagation approach, has been prepared and launched, and is operating at 14.
View Article and Find Full Text PDFLong-wire very low frequency antennas, when lifted up on high altitudes by an aerostat, move through different atmospheric layers and interact with them electrically in a more intense way in comparison with aircraft flights. Such interactions manifest themselves in the form of electrical changes in the clouds and corona discharges excited on the antenna wire, which may increase the risk of mechanical damages and transmitter overload. In order to investigate the interactions between the different types of clouds and a long balloon-borne antenna wire, two theoretical models were developed and compared with results from an experimental balloon flight directly through a storm front.
View Article and Find Full Text PDF