Publications by authors named "Tomasz Madry"

Article Synopsis
  • - Accurate gene annotations are essential for interpreting how genomes function, and the GENCODE consortium has spent twenty years creating reference annotations for human and mouse genomes, serving as a vital resource for researchers globally.
  • - Previous annotations of long non-coding RNAs (lncRNAs) were incomplete and poorly organized, hindering research, prompting GENCODE to launch a comprehensive effort that resulted in adding nearly 18,000 novel human genes and over 22,000 novel mouse genes, significantly increasing the catalog of transcripts.
  • - The new annotations not only show evolutionary patterns and link to genetic variants associated with traits but also improve understanding of previously unclear genomic functions, greatly advancing research into both human and mouse genetic diseases.
View Article and Find Full Text PDF

A readily available stereodynamic and the electronic circular dichroism (ECD)-silent 2,5-di(1-naphthyl)-terephthalaldehyde-based probe has been applied for chirality sensing of primary amines. The chiral amine (the inductor) forces a change in the structure of the chromophore system through the point-to-axial chirality transmission mechanism. As a result, efficient induction of optical activity in the chromophoric system is observed.

View Article and Find Full Text PDF

Chirality transfer from circular dichroism (CD)-silent secondary alcohol (inductor) to the stereodynamic bichromophoric di(1-naphthyl)methane probe (reporter) led to the generation of intense, induced exciton-type Cotton effects (CEs) in the ultraviolet-visible absorption region. The di(1-naphthyl)methane probe exhibits extraordinarily high sensitivity to even small structural variations of the alcohol skeleton, that is, the probe is able to distinguish between an oxygen atom and a methylene group in a 3-hydroxytetrahydrofurane skeleton. Signs and amplitudes of the exciton couplets of B electronic transition might be correlated with the type of stereo-differentiating parts of the molecule flanking the stereogenic center, however, not with the absolute configuration.

View Article and Find Full Text PDF

The benzhydryl (diphenylmethyl) group is a molecular propeller that can act as a chirality reporter if it is introduced nearby a stereogenic center by making an ether bond. The hydrophobic character of the benzhydryl group allows transformation of insoluble natural tartaric acid derivatives into soluble entities in a nonpolar environment. Electronic circular dichroism spectra, recorded within the short-wavelength region of the phenyl B transitions (190-200 nm) shows strong bisignate Cotton effects.

View Article and Find Full Text PDF