In this Letter, we define the Aharony-Bergman-Jafferis-Maldacena loop momentum amplituhedron, which is a geometry encoding Aharony-Bergman-Jafferis-Maldacena planar tree-level amplitudes and loop integrands in the three-dimensional spinor helicity space. Translating it to the space of dual momenta produces a remarkably simple geometry given by configurations of spacelike separated off-shell momenta living inside a curvy polytope defined by momenta of scattered particles. We conjecture that the canonical differential form on this space gives amplitude integrands, and we provide a new formula for all one-loop n-particle integrands in the positive branch.
View Article and Find Full Text PDFPlanar N = 4 supersymmetric Yang-Mills theory appears to be integrable. While this allows one to find this theory's exact spectrum, integrability has hitherto been of no direct use for scattering amplitudes. To remedy this, we deform all scattering amplitudes by a spectral parameter.
View Article and Find Full Text PDF