The originally performed perforation experiments were extended by compression and tensile dynamic tests reported in this work in order to fully characterize the material tested. Then a numerical model was presented to carry out numerical simulations. The tested material was the common brass alloy.
View Article and Find Full Text PDFIn this paper, experimental and numerical results of an aluminum alloy's mechanical behavior are discussed. Over a wide range of strain rates (10 s ≤ έ ≤ 10 s) the influence of the loading impact, velocity and temperature on the dynamic response of the material was analyzed. The interface friction effect on the material's dynamic response is examined using a split Hopkinson pressure bar (SHPB) in a high temperature experiment using finite element analysis (FEA).
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
April 2019
In interventional procedures, the balloon inflation is used to occlude the artery and thus reduce bleeding. There is no practically accepted measure of the procedure efficiency. A finite element method model with state-of-the-art modelling techniques was built in order to predict the occlusion levels under the influence of different balloon inflation and its material stiffness.
View Article and Find Full Text PDF