Breast-conserving surgery requires supportive radiotherapy to prevent cancer recurrence. However, the task of localizing the tumor bed to be irradiated is not trivial. The automatic image registration could significantly aid the tumor bed localization and lower the radiation dose delivered to the surrounding healthy tissues.
View Article and Find Full Text PDFKnowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
November 2015
Purpose: Recent studies have shown that low temperature (hypothermia) at exposure can act in a radio-protective manner at the level of cytogenetic damage. The mechanisms of this phenomenon are not understood, but it was suggested to be due to hypothermia-induced perturbations of the cell cycle. The purpose of the present study was to detect whether a reduced frequency of micronuclei is observed in peripheral blood lymphocytes (PBL) irradiated at low temperature and harvested sequentially at 3 time points.
View Article and Find Full Text PDFThe micronucleus assay is widely used as a biological dosimeter. Due to an inhibitory effect of radiation on cell proliferation the assay yields satisfactory results only when the absorbed dose is below about 5Gy. In 2002 Müller and Rode suggested that a modified version of the test, based on the analysis of the ratio of trinucleated to tetranucleated cells and the frequency of micronuclei (Mn) in binucleated cells containing at least one Mn, can be applied to detect a dose reaching 15Gy (Mutat.
View Article and Find Full Text PDFPurpose: There is a need to develop predictive tests that would allow identifying cancer patients with a high risk of developing side effects to radiotherapy. We compared the predictive value of three functional assays: the G(0) aberration assay, the G(2) aberration assay and the alkaline comet assay in lymphocytes of breast cancer and gynaecological cancer patients.
Material And Methods: Peripheral blood was collected from 35 patients with breast cancer and 34 patients with gynaecological cancer before the onset of therapy.
Int J Radiat Oncol Biol Phys
November 2006
Purpose: The chromosomal radiosensitivity in peripheral blood lymphocytes of cancer patients was reported to be higher than that of healthy donors. This effect is especially prominent when aberrations induced in the G2 phase of the cell cycle are analyzed. The aim of our study was to investigate if the G2 aberration frequencies in lymphocytes of patients with larynx cancer are higher than in the case of control individuals.
View Article and Find Full Text PDFAlthough it is known that many metals induce DNA damage and inhibit DNA repair, information regarding aluminium (Al) is scarce. The aim of this study was to analyze the level of DNA damage in human peripheral blood lymphocytes treated with Al and the impact of Al on the repair of DNA damage induced by ionizing radiation. Cells were treated with different doses of aluminium chloride (1, 2, 5, 10 and 25 microg/ml AlCl(3)) for 72 h.
View Article and Find Full Text PDFThe purpose of this study was to find a possible explanation of the inconsistency of data regarding the genotoxicity of microcystin-LR (MC-LR). We compared the results of the comet assay with the results of the analysis of chromosome aberrations and apoptosis. In order to investigate the influence of MC-LR on DNA damage in human lymphocytes, cells were treated with MC-LR at different concentrations (1, 10 and 25 microg/ml) for 6, 12, 18 and 24 h.
View Article and Find Full Text PDFIn February 2001 a radiation accident occurred in a radiotherapy unit of an oncology hospital in Poland. Five breast cancer patients undergoing radiotherapy received a single high dose of 8 MeV electrons. The exact doses are not known, but they were heterogeneous and may have reached about 100 Gy.
View Article and Find Full Text PDFThe single-cell gel electrophoresis, also known as the comet assay, has gained wide-spread popularity as a simple and reliable method to measure genotoxic and cytotoxic effects of physical and chemical agents as well as kinetics of DNA repair. Cells are generally stained with fluorescent dyes. The analysis of comets--damaged cells which form a typical comet-shaped pattern--is greatly facilitated by the use of a computer image-analysis program.
View Article and Find Full Text PDF