Publications by authors named "Tomasz Kiljanek"

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops.

View Article and Find Full Text PDF

Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species, leading to restrictions on these compounds. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking.

View Article and Find Full Text PDF

The study was designed to test the feasibility of using 3D-printed pollen traps for long-term monitoring of Bombus terrestris colonies' exposure to pesticide residues in pollen loads collected by them, along with an assessment of the resulting risks to the bumblebee's adults, larvae, and queens. Bumblebee colonies were placed in the vicinity of flowering orchards, winter oilseed rape, allotments, or home gardens for 6 weeks of the experiment. Pollen traps printed in 3D technology were installed in the hive inlets.

View Article and Find Full Text PDF

Biogenic amines (BAs) are organic, basic nitrogenous compounds formed during the decarboxylation of amino acids. A method for the determination of eight biogenic amines (tryptamine, 2-phenyletylamine, putrescine, cadaverine, histamine, tyramine, spermidine, spermine) in ripened cheeses was developed and validated. Cheese samples with the addition of internal standards were extracted with 0.

View Article and Find Full Text PDF

Pesticide exposure and food stress are major threats to bees, but their potential synergistic impacts under field-realistic conditions remain poorly understood and are not considered in current pesticide risk assessments. We conducted a semi-field experiment to examine the single and interactive effects of the novel insecticide flupyradifurone (FPF) and nutritional stress on fitness proxies in the solitary bee . Individually marked bees were released into flight cages with monocultures of buckwheat, wild mustard or purple tansy, which were assigned to an insecticide treatment (FPF or control) in a crossed design.

View Article and Find Full Text PDF

The aim of this study was to develop a method for the determination of glyphosate, its metabolite aminomethylphosphonic acid (AMPA), and glufosinate ammonium residues in beebread samples, which could then be used to assess bees' exposure to their residues. The complexity of beebread's matrix, combined with the specific properties of glyphosate itself, required careful selection and optimization of each analysis step. The use of molecularly imprinted solid-phase extraction (MIP-SPE) by AFFINIMIP glyphosate as an initial clean-up step significantly eliminated matrix components and ensured an efficient derivatization step.

View Article and Find Full Text PDF

Current work presents developed and validated miniaturized method for residue analysis of 261 pesticides and their metabolites as well as 6 congeners of non-dioxin like polychlorinated biphenyls (ndl-PCB) in a very low mass beebread sample. Sample preparation is based on modified QuEChERS protocol with all steps miniaturized to enable multiresidue analysis of sample with extremely low weight. Sample of beebread (0.

View Article and Find Full Text PDF

Current work presents a modified QuEChERS method for the determination of 207 pesticide residues in honey by LC-MS/MS and GC-MS/MS. Acetate buffered acetonitrile extraction with Z-Sep+ and PSA dispersive-SPE clean-up were used for sample preparation. Optimised conditions allows determination of neonicotinoids as well as other insecticides, fungicides, herbicides, acaricides, growth regulators and veterinary drugs in honey samples.

View Article and Find Full Text PDF

Introduction: Amitraz is a formamide exhibiting both acaricidal and insecticidal activity and is frequently used by beekeepers to protect honeybee colonies against mites. The aim of this apiary trial was to evaluate the impact of honeybee colony fumigation with amitraz on the level of contamination of honey stored in combs.

Material And Methods: Experimental colonies were fumigated four times every four days with one tablet of Apiwarol per treatment.

View Article and Find Full Text PDF

Study combines data about the exposure of honeybees to pesticides from plant protection products and veterinary medicinal products. Residues of 200 pesticide and pesticide metabolites in 343 live and 74 poisoned honeybee samples, obtained during the years of 2014-2015, were determined by LC-MS/MS and GC-MS/MS. In 44% of live honeybee 48 different pesticide residues were found, mainly amitraz metabolites (DMF, DMPF) and chlorpyrifos.

View Article and Find Full Text PDF

A method for the determination of 200 pesticides and pesticide metabolites in honeybee samples has been developed and validated. Almost 98% of compounds included in this method are approved to use within European Union, as active substances of plant protection products or veterinary medicinal products used by beekeepers to control mites Varroa destructor in hives. Many significant metabolites, like metabolites of imidacloprid, thiacloprid, fipronil, methiocarb and amitraz, are also possible to detect.

View Article and Find Full Text PDF