Publications by authors named "Tomasz Glawdel"

Free-flow electrophoresis (FFE) has the ability to continuously separate charged solutes from complex biological mixtures. Recently, a free-flow counterflow gradient focusing mechanism has been introduced to FFE, and it offers the potential for improved resolution and versatility. However, further investigation is needed to understand the solute dispersion at the focal position.

View Article and Find Full Text PDF

Free-flow electrophoresis (FFE) enables the continuous separation and collection of charged solutes, and as a result, it has drawn interest as both a preparative and an analytical tool for biological applications. Recently, a free-flow counterflow gradient focusing (FF-CGF) mechanism has been proposed with the goal of improving the resolution and versatility of FFE. To realize this potential, the factors that influence solute dispersion deserve further attention, including the gradient strength and the parabolic profile of the counterflow.

View Article and Find Full Text PDF

With its ability to continuously separate and collect charged analytes, free-flow electrophoresis (FFE) has become a useful tool for the purification and real-time analysis of biological mixtures. This work presents a new free-flow counterflow gradient focusing (FF-CGF) mechanism that uses a novel velocity gradient to counterbalance electrophoretic migration. This counterflow gradient is created by simply introducing fluid flow through the sidewalls of the FFE chamber.

View Article and Find Full Text PDF

Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or "sag effect" was identified.

View Article and Find Full Text PDF

This study reports a new method for establishing an open tubular IPG in a microchip coupled with a whole column image detection (WCID) system for protein separation applications. This method allows a wider range of immobilized pH (2.6-9.

View Article and Find Full Text PDF

Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient.

View Article and Find Full Text PDF

Droplet-based microfluidics is an emerging high-throughput screening technology finding applications in a variety of areas such as life science research, drug discovery and material synthesis. In this paper we present a cost-effective, scalable microwave system that can be integrated with microfluidic devices enabling remote, simultaneous sensing and heating of individual nanoliter-sized droplets generated in microchannels. The key component of this microwave system is an electrically small resonator that is able to distinguish between materials with different electrical properties (i.

View Article and Find Full Text PDF

This study extends our previous work on droplet generation in microfluidic T-junction generators to include dynamic interfacial tension effects created by the presence of surfactants. In Paper I [T. Glawdel, C.

View Article and Find Full Text PDF

Micellar affinity gradient focusing (MAGF) is a microfluidic counterflow gradient focusing technique that combines the favorable features of MEKC and temperature gradient focusing. MAGF separates analytes on the basis of a combination of electrophoretic mobility and partitioning with the micellar phase. A temperature gradient is produced along the separation channel containing an analyte/micellar system to create a gradient in interaction strength (retention factor) between the analytes and micelles.

View Article and Find Full Text PDF

Temperature gradient focusing (TGF) is a counterflow gradient focusing technique, which utilizes a temperature gradient across a microchannel or capillary to separate analytes. With an appropriate buffer, the temperature gradient creates a gradient in both the electric field and electrophoretic velocity. Combined with a bulk counter flow, ionic species concentrate at a unique point where the total velocity sums to zero and separate from each other.

View Article and Find Full Text PDF

This is the second part of a two-part study on the generation of droplets at a microfluidic T-junction operating in the transition regime. In the preceding paper [Phys. Rev.

View Article and Find Full Text PDF

This is the first part of a two-part study on the generation of droplets at a microfluidic T-junction operating in the transition regime where confinement of the droplet creates a large squeezing pressure that influences droplet formation. In this regime, the operation of the T-junction depends on the geometry of the intersection (height-to-width ratio, inlet width ratio), capillary number, flow ratio, and viscosity ratio of the two phases. Here in paper I we presented our experimental observations through the analysis of high-speed videos of the droplet formation process.

View Article and Find Full Text PDF

When droplets enter a junction they sort to the channel with the highest flow rate at that instant. Transport is regulated by a discrete time-delayed feedback that results in a highly periodic behavior where specific patterns can continue to cycle indefinitely. Between these highly ordered regimes are chaotic structures where no pattern is evident.

View Article and Find Full Text PDF

This study presents a microfluidic system that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill) to perform toxicity testing on fish cells seeded in the system. The system consists of three mechanical components: (1) a toxicity testing chip containing a microfluidic gradient generator which creates a linear concentration distribution of toxicant in a cell test chamber, (2) an electroosmotic (EO) pump chip that controls the flow rate and operation of the toxicity chip, and (3) indirect reservoirs that connect the two chips allowing for the toxicant solution to be pumped separately from the electroosmotic pump solution. The flow rate and stability of the EO pumps was measured and tested by monitoring the gradient generator using fluorescence microscopy.

View Article and Find Full Text PDF

A poly(dimethylsiloxane)(PDMS)/SU-8/quartz hybrid chip was developed and applied in the isoelectric focusing (IEF) of proteins with ultraviolet (UV) absorbance-based whole-channel imaging detection (UV-WCID). Each hybrid chip was made of three layers: a PDMS flat top substrate, a bottom quartz substrate and a middle layer of SU-8 photoresist. The SU-8 serves two purposes: it contains the microchannel used for IEF separation, and acts as an optical slit that absorbs UV light below 300 nm improving detection sensitivity in WCID.

View Article and Find Full Text PDF

Rhodamine B based fluorescence thermometry is commonly used in microfluidics to measure fluid temperatures in microchannels. Notable absorption of Rhodamine B into PDMS channel walls, however, causes difficulties in obtaining accurate temperature measurements due to a steady increase in the overall fluorescent signal. A simple and effective technique is reported that removes the fluorescent signal from absorbed Rhodamine B dye by means of photobleaching with a high intensity light source before taking images for thermometry analysis.

View Article and Find Full Text PDF

Simple-structured, well-functioned disposable poly(dimethylsiloxane) (PDMS) microchips were developed for capillary isoelectric focusing with whole column imaging detection (CIEF-WCID). Side-by-side comparison of the developed microchips with well-established commercial capillary cartridges demonstrated that the disposable microchips have comparable performance as well as advantages such as absence of lens effect and possibility of high-aspect-ratio accompanied with a dramatic reduction in cost.

View Article and Find Full Text PDF

A poly(dimethylsiloxane) microfluidic chip-based cartridge is developed and reported here for protein analysis using isoelectic focusing (IEF)-whole-channel imaging detection (WCID) technology. In this design, commercial dialysis membranes are integrated to separate electrolytes and samples and to reduce undesired pressure-driven flow. Fused-silica capillaries are also incorporated in this design for sample injection and channel surface preconditioning.

View Article and Find Full Text PDF

A novel method is presented for on-chip temperature measurements using a poly(dimethylsiloxane) (PDMS) thin film dissolved with Rhodamine B dye. This thin film is sandwiched between two glass substrates (one of which is 150 microm thick) and bonded to a microchannel molded in a PDMS substrate. Whole-chip (liquid and substrate) temperature measurements can be obtained via fluorescent intensity visualization.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionr4qu54gi9b860n4iud2lorm1iejrpnsv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once