Publications by authors named "Tomasz Galek"

The Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, and Zr content has been determined in the tested rock raw materials. The concentration of cadmium (Cd) was found to be elevated in all types of rock materials and was found on average to be: 1.39 mg/kg in limestones, 0.

View Article and Find Full Text PDF

Tissue engineering constitutes the most promising method of severe peripheral nerve injuries treatment and is considered as an alternative to autografts. To provide appropriate conditions during recovery special biomaterials called nerve guide conduits are required. An ideal candidate for this purpose should not only be biocompatible and protect newly forming tissue but also promote the recovery process.

View Article and Find Full Text PDF

Rare Earth elements (REE) such as NdFeB are commonly used to produce permanent magnets. Thanks to their superior properties, these materials are highly desirable for green energy applications such as wind power generators or electric cars. Currently, REEs are critical for the ongoing development of eco-friendly solutions in different industrial branches.

View Article and Find Full Text PDF

An increasing number of tooth replacement procedures ending with implant failure generates a great need for the delivery of novel biomedical solutions with appropriate mechanical characteristics that would mimic natural tissue and undergo biodegradation. This phenomenon constitutes a significant difficulty for scientists, since currently applied biomaterials dedicated for this purpose are based on stainless steel, Ti, and Ti and CoCr alloys. One of the most promising raw materials is magnesium, which has been proven to promote bone regeneration and accelerate the tissue healing process.

View Article and Find Full Text PDF

The paper presents new reactive materials, namely marl and travertine, and their thermal modifications and the Polonite material, analyzing their phosphorus removal from water and wastewater by sorption. Based on the experimental data, an analysis of the factors influencing the sorption capacity of the materials, such as the material dose, pH of the initial solution, process temperature, surface structure, and morphology, was performed. Adsorption isotherms and maximum sorption capacities were determined with the use of the Langmuir, Freundlich, Langmuir-Freundlich, Tóth, Radke-Praunitz, and Marczewski-Jaroniec models.

View Article and Find Full Text PDF

Massive blood loss is still a great challenge for modern medicine. To stop the hemorrhage during the surgery or after injury apart from suturing or electrocoagulation, the most efficient method of hemostasis restoration is the use of hemostatic agents. Although there are numerous products on the market, there is still a need for biomaterials that are capable of fast and efficient bleeding management without affecting wound closure or embolism.

View Article and Find Full Text PDF