This paper presents the results of inspecting tensile stress-loaded GFRP (glass fiber-reinforced polymer) samples using the Magnetic Recording Method (MRM). The MRM can be utilized solely to examine ferromagnetic materials. The modification was proposed in order to examine nonmagnetic composites.
View Article and Find Full Text PDFThis paper aims to present multisensory spatial analysis (MSA). The method was designed for the quick, simultaneous identification of concrete cover thickness , rebar diameter, and alloys of reinforcement in large areas of reinforced concrete (RC) structures, which is a complex and unsolved issue. The main idea is to divide one complex problem into three simple-to-solve and based on separate premises tasks.
View Article and Find Full Text PDFThis work presents how significantly the proper selection of the magnetization method can improve almost all parameters of the magnetic method and affect the effectiveness of the evaluation of reinforced concrete (RC) structures. Three magnetization methods are considered in this paper: opposite pole magnetization (typical solution), same pole magnetization, and (as a reference point) no magnetization. The experiments are carried out in a three-dimensional (XYZ) space.
View Article and Find Full Text PDFThis paper presents the development of the lock-in thermography system with an additional cooling system. System feasibility is tested by investigating a square-shaped glass fiber-reinforced polymer (GFRP) with artificially made outer flaws. The influence of heating mode and sinusoidal excitation period on the defect detectability is considered.
View Article and Find Full Text PDFThe article discusses the utilization of Pulsed Multifrequency Excitation and Spectrogram Eddy Current Testing (PMFES-ECT) in conjunction with the supervised learning method for the purpose of estimating defect parameters in conductive materials. To obtain estimates for these parameters, a three-dimensional finite element method model was developed for the sensor and specimen containing defects. The outcomes obtained from the simulation were employed as training data for the k-Nearest Neighbors (k-NN) algorithm.
View Article and Find Full Text PDFFast-setting bioactive cements were developed for the convenience of retrograde fillings during endodontic microsurgery. This in vitro study aimed to investigate the effect of irrigation on the washout of relatively fast-setting materials (Biodentine, EndoCem Zr, and MTA HP) in comparison with MTA Angelus White and IRM in an apicectomy model. Washout resistance was assessed using artificial root ends.
View Article and Find Full Text PDFMaterials (Basel)
January 2023
This paper presents the results of experiments using the eddy current system designated for nondestructive inspection of carbon fiber-reinforced composites. For this purpose, the eddy current testing system with a differential transducer with two pairs of excitation coils oriented perpendicularly and a central pick-up coil was utilized. The transducer measures the magnetic flux difference flowing through the pick-up coil.
View Article and Find Full Text PDFThe magnetic method is the most promising method that can be used to inspect large areas of reinforced concrete (RC) structures. Magnetization is a crucial process in this method. The paper aims to present the impact of the magnetization method on the results in the detection of reinforced bars (rebars) and the evaluation of concrete cover thickness in reinforced concrete (RC) structures.
View Article and Find Full Text PDFThis paper proposes and experimentally investigates a novel nondestructive testing method for ferromagnetic elements monitoring, the Magnetic Recording Method (MRM). In this method, the inspected element must be magnetized in a strictly defined manner before operation. This can be achieved using an array of permanent magnets arranged to produce a quasi-sinusoidal magnetization path.
View Article and Find Full Text PDFThis paper presents a new method for nondestructive testing-a pulsed multifrequency excitation and spectrogram eddy current testing (PMFES-ECT), which is an extension of the multifrequency excitation and spectrogram eddy current testing. The new method uses excitation in the form of pulses repeated at a specified time, containing several periods of a waveform consisting of the sum of sinusoids with a selected frequency, amplitude and phase. This solution allows the maintenance of the advantages of multifrequency excitation and, at the same time, generates high energy pulses similar to those used in pulse eddy current testing (PECT).
View Article and Find Full Text PDFIn this paper, a novel approach to Non-Destructive Testing (NDT) of defective materials for the aircraft industry is proposed, which utilizes an approach based on multifrequency and spectrogram eddy current method combined with an image analysis method previously applied for general-purpose full-reference image quality assessment (FR IQA). The proposed defect identification method is based on the use of the modified SSIM4 image quality metric. The developed method was thoroughly tested for various locations, sizes, and configurations of defects in the examined structure.
View Article and Find Full Text PDFThis paper discusses the experimental examination of anisotropic steel-made samples subjected to a static stress load. A nondestructive testing (NDT) measurement system with a transducer, which enables observation of local hysteresis loops and detection of samples' inhomogeneity, is proposed. Local hysteresis loops are measured on two perpendicular axes, including one parallel to the rolling direction of the samples.
View Article and Find Full Text PDFIn this paper, we present an eddy current transducer with rotating permanent magnets for the inspection of planar conducting plates. The transducer consists of a rotating head with permanent magnets, which is used to generate variable magnetic fields and thus induce eddy currents in the tested material. Two Hall sensors connected in a differential manner are used to detect a nonuniform distribution of eddy currents induced in a specimen containing a defect.
View Article and Find Full Text PDFEddy current transducer with sensing coils placed orthogonally and connected in differential mode was introduced to evaluate fatigue cracks in clad pipeline circumferential welds. A dedicated embedded electronic hardware was developed to drive the transducer and measure the electrical complex impedance of the coils, and was specifically designed for operation under autonomous in-line inspection tool. In the laboratory experiments, an automated inspection was performed with the goal to evaluate transducer’s detectability, and different scanning speed was tested to reproduce in service situation.
View Article and Find Full Text PDFThe purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments.
View Article and Find Full Text PDF