We have developed disposable color-changing polymeric films for quantification of furfural-a freshness indicator-in beer using a smartphone-based reader. The films are prepared by radical polymerization of 4-vinylaniline, as a furfural-sensitive indicator monomer, 2-hydroxymethyl methacrylate as a comonomer, and ethylene dimethyl methacrylate (EDMA) as a cross-linker. The sensing mechanism is based on the Stenhouse reaction in which aniline and furfural react in acidic media with the generation of a deep red cyanine derivative, absorbing at 537 nm, which is visible to the naked eye.
View Article and Find Full Text PDFPolystyrene grafted with a chiral zinc-complexing camphor-derived N,N-disubstituted hydroxyamide is proposed as a new type of functional polymer of high reusability for the development of sustainable organozinc-catalyzed asymmetric reactions. The main goal of this new functional polymer is the ease of the hydroxyamide-moiety preparation (cheap chiral ligand obtained straightforwardly from an enantiopure starting material coming from the chiral pool), as well as its chemical robustness when compared with other related zinc-complexing functional groups. The latter allows the polymer to be active after multiple applications, without significant loss of its catalytic activity.
View Article and Find Full Text PDFThe screening of the catalytic activity in the diethylzinc reaction of a series of easily accessible (1S)-ketopinic-acid derived hydroxyamides, designed by key structure modifications of a parent highly active related bis(hydroxyamide), has allowed to find the first case of dual stereoselection in highly structurally close ligands of such interesting chemically sustainable typology. The found striking dual stereoselection is explained on the basis of empiric models for the acting zinc catalysts and involved controlling transition states, which are supported by additional specific experimental structure-activity tests.
View Article and Find Full Text PDFAsymmetric bis(hydroxyamide)-based zinc-chelate catalysts are able to promote the enantioselective addition of diethylzinc to benzaldehyde in the absence of titanium with yields and ees comparable, or inclusively superior, to their C(2) -symmetric analogues. This unexpected fact demonstrates that the previously established assumption on the necessity of using C(2) -symmetric bis(hydrdoxyamides) to generate C(2) -symmetric zinc-chelate catalysts can be discarded, which expand the possibilities for designing new ligands based on the interesting hydroxyl-amide functional grouping.
View Article and Find Full Text PDF