Protein dynamics are essential to biological function, and methods to determine such structural rearrangements constitute a frontier in structural biology. Synchrotron radiation can track real-time protein dynamics, but accessibility to dedicated high-flux single X-ray pulse time-resolved beamlines is scarce and protein targets amendable to such characterization are limited. These limitations can be alleviated by triggering the reaction by laser-induced activation of a caged compound and probing the structural dynamics by fast-readout detectors.
View Article and Find Full Text PDFCharacterization of the mechanical response of polymers and composite materials relies heavily on the macroscopic stress-strain response in uniaxial tensile configurations. To provide representative information, the deformation process must be homogeneous within the gauge length, which is a condition that is rarely achieved due to stress concentration or inhomogeneities within the specimen. In this work, the development of a biaxial mechanical testing device at the CoSAXS beamline at MAX IV Laboratory is presented.
View Article and Find Full Text PDFThe response of soft colloids to crowding depends sensitively on the particles' compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix.
View Article and Find Full Text PDFThe function of biomolecules is tightly linked to their structure, and changes therein. Time-resolved X-ray solution scattering has proven a powerful technique for interrogating structural changes and signal transduction in photoreceptor proteins. However, these only represent a small fraction of the biological macromolecules of interest.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2021
The CoSAXS beamline at the MAX IV Laboratory is a modern multi-purpose (coherent) small-angle X-ray scattering (CoSAXS) instrument, designed to provide intense and optionally coherent illumination at the sample position, enabling coherent imaging and speckle contrast techniques. X-ray tracing simulations used to design the beamline optics have predicted a total photon flux of 10-10 photons s and a degree of coherence of up to 10% at 7.1 keV.
View Article and Find Full Text PDFThis study addresses an innovative approach to generate aerated foods with appealing texture through the utilization of lupin protein isolate (LPI) in combination with edible fats. We show the impact of transglutaminases (TGs; SB6 and commercial), glycerol (Gly), soy lecithin (Lec) and linoleic acid (LA) on the micro- and nanostructure of health promoting solid foods created from LPI and fats blends. 3-D tomographic images of LPI with TG revealed that SB6 contributed to an exceptional bubble spatial organization.
View Article and Find Full Text PDFBackground: Quinoa (Chenopodium quinoa Willd.) flour and processed traditional Peruvian quinoa breakfast foods were studied to evaluate the effect of extrusion and post-processing on protein properties, morphology and nutritional characteristics (amino acids and dietary fibers).
Results: The extrusion increased quinoa protein crosslinking and aggregation observed by size exclusion high-performance liquid chromatography and the amount of soluble fibers, as well as decreasing the amounts of insoluble fibers in the processed foods.
Hypothesis: Nitric oxide (NO)-releasing Pluronic F127 hydrogels (F127) containing dissolved S-nitrosothiols or pendant N-diazeniumdiolate (NONOate) groups have been described. The NO charging of these hydrogels is usually limited by their low stability or disruption of the micellar packing. S-nitrosothiol-terminated F127 may emerge as a new strategy for allowing NO delivery at different rates in biomedical applications.
View Article and Find Full Text PDFAn acoustically levitated droplet has been used to collect synchrotron SAXS data on human serum albumin protein solutions up to a protein concentration of 400 mg ml. A careful selection of experiments allows for fast data collection of a large amount of data, spanning a protein concentration/solvent concentration space with limited sample consumption (down to 3 µL per experiment) and few measurements. The data analysis shows data of high quality that are reproducible and comparable with data from standard flow-through capillary-based experiments.
View Article and Find Full Text PDFClays can be synthesised to have specific functional properties, which have been exploited in a range of industrial processes. A key characteristic of clay is the presence of a negatively charged surface, surrounded by an oppositely charged rim. Because of that, clays are able to sequester cationic compounds resulting in the formation of ordered layered structures, known as tactoids.
View Article and Find Full Text PDFWheat gluten (WG) and potato protein (PP) were modified to a basic pH by NaOH to impact macromolecular and structural properties. Films were processed by compression molding (at 130 and 150 °C) of WG, PP, their chemically modified versions (MWG, MPP) and of their blends in different ratios to study the impact of chemical modification on structure, processing and tensile properties. The modification changed the molecular and secondary structure of both protein powders, through unfolding and re-polymerization, resulting in less cross-linked proteins.
View Article and Find Full Text PDFA combination of genotype, cultivation environment, and protein separation procedure was used to modify the nanoscale morphology, polymerization, and chemical structure of glutenin proteins from wheat. A low-polymerized glutenin starting material was the key to protein-protein interactions mainly via SS cross-links during film formation, resulting in extended β-sheet structures and propensity toward the formation of nanoscale morphologies at molecular level. The properties of glutenin bioplastic films were enhanced by the selection of a genotype with a high number of cysteine residues in its chemical structure and cultivation environment with a short grain maturation period, both contributing positively to gluten strength.
View Article and Find Full Text PDFTwo fractions from pea (Pisum sativum L.), protein isolate (PPI) and dietary fiber (PF), were newly produced by extraction-fractionation method and characterized in terms of particle size distribution and structural morphology using SEM. The newly produced PPI and PF fractions were processed into pasta-like sheets with varying protein to fiber ratios (100/0, 90/10, 80/20, 70/30 and 50/50, respectively) using high temperature compression molding.
View Article and Find Full Text PDFBiocompatible chemically cross-linked organic-inorganic (O-I) hybrid nanocomposites were developed using a new atoxic, simple and fast, solvent-free pathway. Poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG), which are both biocompatible, were used as the organic moieties (at different PCL/PEG ratios), while in situ synthesized polysilsesquioxanes made up the inorganic moiety. The O-I hybrid nanocomposites' molecular structures were characterized using solid-state Si NMR, TGA and ATR-IR.
View Article and Find Full Text PDFThe structural properties, and the intracrystalline swelling of Na-, and Ca-montmorillonite (Na-, and Ca-mmt) have been investigated as an effect of decreasing the relative permittivity of the solvent, i.e. from water to ethanol (EtOH), utilizing the experimental techniques; small angle X-ray scattering (SAXS) and osmotic pressure measurements.
View Article and Find Full Text PDFMesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops.
View Article and Find Full Text PDFWe demonstrate that acoustic trapping can be used to levitate and manipulate droplets of soft matter, in particular, lyotropic mesophases formed from self-assembly of different surfactants and lipids, which can be analyzed in a contact-less manner by X-ray scattering in a controlled gas-phase environment. On the macroscopic length scale, the dimensions and the orientation of the particle are shaped by the ultrasonic field, while on the microscopic length scale the nanostructure can be controlled by varying the humidity of the atmosphere around the droplet. We demonstrate levitation and in situ phase transitions of micellar, hexagonal, bicontinuous cubic, and lamellar phases.
View Article and Find Full Text PDFHypothesis: Sodium dioctylsulfosuccinate (Aerosol OT or NaAOT) is a well-studied charging agent for model poly(methyl methacrylate) (PMMA) latexes dispersed in nonpolar alkane solvents. Despite this, few controlled variations have been made to the molecular structure. A series of counterion-exchanged analogs of NaAOT with other alkali metals (lithium, potassium, rubidium, and cesium) were prepared, and it was expected that this should influence the stabilization of charge on PMMA latexes and the properties of the inverse micelles.
View Article and Find Full Text PDFThe packing of cellulose nanocrystals (CNC) in the anisotropic chiral nematic phase has been investigated over a wide concentration range by small-angle X-ray scattering (SAXS) and laser diffraction. The average separation distance between the CNCs and the average pitch of the chiral nematic phase have been determined over the entire isotropic-anisotropic biphasic region. The average separation distances range from 51 nm, at the onset of the anisotropic phase formation, to 25 nm above 6 vol % (fully liquid crystalline phase) whereas the average pitch varies from ≈15 μm down to ≈2 μm as ϕ increases from 2.
View Article and Find Full Text PDFProtein macromolecules adopted for biological and bio-based material functions are known to develop a structured protein network upon chemical modification. In this study, we aimed to evaluate the impact of chemical additives such as, NaOH, NH4OH and salicylic acid (SA), on the secondary and nano-structural transitions of wheat proteins. Further, the effect of chemically induced modifications in protein macromolecular structure was anticipated in relation to functional properties.
View Article and Find Full Text PDFIn the present study, we were able to produce composites of wheat gluten (WG) protein and a novel genetically modified potato starch (MPS) with attractive mechanical and gas barrier properties using extrusion. Characterization of the MPS revealed an altered chain length distribution of the amylopectin fraction and slightly increased amylose content compared to wild type potato starch. WG and MPS of different ratios plasticized with either glycerol or glycerol and water were extruded at 110 and 130 °C.
View Article and Find Full Text PDFA macroscopically oriented double diamond inverse bicontinuous cubic phase (QII(D)) of the lipid glycerol monooleate is reversibly converted into a gyroid phase (QII(G)). The initial QII(D) phase is prepared in the form of a film coating the inside of a capillary, deposited under flow, which produces a sample uniaxially oriented with a ⟨110⟩ axis parallel to the symmetry axis of the sample. A transformation is induced by replacing the water within the capillary tube with a solution of poly(ethylene glycol), which draws water out of the QII(D) sample by osmotic stress.
View Article and Find Full Text PDF