Sulfadiazine (SDZ), a bacteriostatic agent, was hosted in a metal-organic framework, specifically in MIL-53(Al) and modified-zinc MIL-53(Al,Zn). Materials were characterized structural, and texturally. Both hosts loaded sulfadiazine but they were differenced regarding the release of sulfadiazine.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2019
Objective: The main purpose of this article is to show the valuable characteristics that liotropic liquid crystal systems possess to be employed as new drug delivery systems.
Significance: Colloidal aqueous dispersions of lyotropic liquid crystal mesophases such as the identified as cubosomes and hexosomes, and so on, have received considerable attention due to their unique nanostructures and their thermodynamic properties, which provide the potential as a sustained drug release matrix. Additionally, their large surface area and similarity with the liquid crystal structures of intercellular lipids of stratum corneum enhances the interaction with the skin and mucous, increasing the potential for topical drug delivery efficiency of biopharmaceutical class II drugs as the antifungal ketoconazole.
The development of a controlled release formulation of captopril has been a challenge for some time. In this work, the in vitro sustained release of captopril from Metolose SH 4000 SR/sodium bicarbonate floating tablets has been studied, varying the proportions of Metolose and bicarbonate. This was studied at two different compaction pressures.
View Article and Find Full Text PDF