Titanium nitride is a material of interest for many superconducting devices such as nanowire microwave resonators and photon detectors. Thus, controlling the growth of TiN thin films with desirable properties is of high importance. This work aims to explore effects in ion beam-assisted sputtering (IBAS), were an observed increase in nominal critical temperature and upper critical fields are in tandem with previous work on Niobium nitride (NbN).
View Article and Find Full Text PDFSuperconducting nanowire single photon detectors are becoming a dominant technology in quantum optics and quantum communication, primarily because of their low timing jitter and capability to detect individual low-energy photons with high quantum efficiencies. However, other desirable characteristics, such as high detection rates, operation in cryogenic and high magnetic field environments, or high-efficiency detection of charged particles, are underrepresented in literature, potentially leading to a lack of interest in other fields that might benefit from this technology. We review the progress in use of superconducting nanowire technology in photon and particle detection outside of the usual areas of physics, with emphasis on the potential use in ongoing and future experiments in nuclear and high energy physics.
View Article and Find Full Text PDFWe demonstrate strong magnon-photon coupling of a thin-film Permalloy device fabricated on a coplanar superconducting resonator. A coupling strength of 0.152 GHz and a cooperativity of 68 are found for a 30-nm-thick Permalloy stripe.
View Article and Find Full Text PDF