Publications by authors named "Tomas Pinheiro"

Direct Laser Writing (DLW) has been increasingly selected as a microfabrication route for efficient, cost-effective, high-resolution material synthesis and conversion. Concurrently, lasers participate in the patterning and assembly of functional geometries in several fields of application, of which electronics stand out. In this review, recent advances and strategies based on DLW for electronics microfabrication are surveyed and outlined, based on laser material growth strategies.

View Article and Find Full Text PDF

Laser-induced graphene (LIG) is as a promising material for flexible microsupercapacitors (MSCs) due to its simple and cost-effective processing. However, LIG-MSC research and production has been centered on non-sustainable polymeric substrates, such as polyimide. In this work, it is presented a cost-effective, reproducible, and robust approach for the preparation of LIG structures via a one-step laser direct writing on chromatography paper.

View Article and Find Full Text PDF

Background: Diabetes is a heterogeneous and multifactorial disease. However, glycemia and glycated hemoglobin have been the focus of diabetes diagnosis and management for the last decades. As diabetes management goes far beyond glucose control, it has become clear that assessment of other biochemical parameters gives a much wider view of the metabolic state of each individual, enabling a precision medicine approach.

View Article and Find Full Text PDF

Laser-induced graphene (LIG) has gained preponderance in recent years, as a very attractive material for the fabrication and patterning of graphitic structures and electrodes, for multiple applications in electronics. Typically, polymeric substrates, such as polyimide, have been used as precursor materials, but other organic, more sustainable, and accessible precursor materials have emerged as viable alternatives, including cellulose substrates. However, these substrates have lacked the conductive and chemical properties achieved by conventional LIG precursor substrates and have not been translated into fully flexible, wearable scenarios.

View Article and Find Full Text PDF

The appearance and quick spread of the new severe acute respiratory syndrome coronavirus disease, COVID-19, brought major societal challenges. Importantly, suitable medical diagnosis procedures and smooth clinical management of the disease are an emergent need, which must be anchored on novel diagnostic methods and devices. Novel molecular diagnostic tools relying on nucleic acid amplification testing have emerged globally and are the current gold standard in COVID-19 diagnosis.

View Article and Find Full Text PDF

The plasmonic properties of gold nanoparticles (AuNPs) are a promising tool to develop sensing alternatives to traditional, enzyme-catalyzed reactions. The need for sensing alternatives, especially in underdeveloped areas of the world, has given rise to the application of nonenzymatic sensing approaches paired with cellulosic substrates to biochemical analysis. Herein, we present three individual, low-step, wet-chemistry, colorimetric assays for three target biomarkers, namely, glucose, uric acid, and free cholesterol, relevant in diabetes control and their translation into paper-based assays and microfluidic platforms for multiplexed analysis.

View Article and Find Full Text PDF

Due to its properties, paper represents an alternative to perform point-of-care tests for colorimetric determination of glucose levels, providing simple, rapid, and inexpensive means of diagnosis. In this work, we report the development of a novel, rapid, disposable, inexpensive, enzyme-free, and colorimetric paper-based assay for glucose level determination. This sensing strategy is based on the synthesis of gold nanoparticles (AuNPs) by reduction of a gold salt precursor, in which glucose acts simultaneously as reducing and capping agent.

View Article and Find Full Text PDF