Publications by authors named "Tomas Picek"

Despite covering <5% of Earth's terrestrial area, peatlands are crucial for global carbon storage and are hot spots of methane cycling. This study examined the dynamics of aerobic and anaerobic methane oxidation in two undisturbed peatlands: a fen and a spruce swamp forest. Using microcosm incubations, we investigated the effect of ammonium addition, at a level similar to current N pollution processes, on aerobic methane oxidation.

View Article and Find Full Text PDF

Nutrient addition may change soil microbial community structure, but soil microbes must simultaneously contend with other, interacting factors. We studied the effect of soil type (peat, mineral), water level (low, high), and nutrient addition (unfertilized, fertilized) on wet grassland soil microbial community structure in both vegetated and un-vegetated soils after five years of treatment application in a mesocosm, using Illumina sequencing of the bacterial V4 region of the small ribosomal sub-units. Soil type, water level, and plant presence significantly affected the soil microbial structure, both singly and interactively.

View Article and Find Full Text PDF

The purpose of this work is to explore the preparation of nanofibrous orally dispersible films (ODFs) by needleless electrospinning from the active pharmaceutical ingredient (API) Tadalafil using particles suspended in a solution of polymers and other excipients. The prepared films were characterized by a combination of scanning electron microscopy, mechanical tests, measurements of the disintegration time and dissolution characteristic, X-ray diffraction, and differential scanning calorimetry. Furthermore, we investigated the impact of lamination pressures in the range of 0 to 5 bars combined with films at various relative humidity values on the mechanical properties of the ODF.

View Article and Find Full Text PDF

In peatlands, decomposition of organic matter is limited by harsh environmental conditions and low decomposability of the plant material. Shifting vegetation composition from Sphagnum towards vascular plants is expected in response to climate change, which will lead to increased root exudate flux to the soil and stimulation of microbial growth and activity. We aimed to evaluate the effect of root exudates on the decomposition of recalcitrant dissolved organic carbon (DOC) and to identify microorganisms involved in this process.

View Article and Find Full Text PDF

Stormwater sediments of various sizes and densities are recognised as one of the most important stormwater quality parameters that can be conventionally controlled by settling in detention ponds. The bottom grid structure (BGS) is an innovative concept proposed in this study to enhance removal of stormwater sediments entering ponds and reduce sediment resuspension. This concept was studied in a hydraulic scale model with the objective of elucidating the effects of the BGS geometry on stormwater sediment trapping.

View Article and Find Full Text PDF
Article Synopsis
  • Peatland vegetation, including mosses, graminoids, and ericoid shrubs, influences soil microbial communities, which vary by microhabitat types like Sphagnum, cotton-grass, and blueberry.
  • * The study used advanced sequencing techniques to show that fungal communities are highly specific to their microhabitats, while prokaryotic communities are affected by soil pH and nitrogen levels.
  • * Seasonal changes impact microbial composition, but microhabitat differences are more significant in determining the diversity and function of methane-cycling communities, highlighting the ecological complexity of peatlands.
View Article and Find Full Text PDF

We compared methane (CH4) and carbon dioxide (CO2) fluxes in samples collected from the aboveground parts of wood ant nests and in the organic and mineral layer of the surrounding forest floor. Gas fluxes were measured during a laboratory incubation, and microbial properties (abundance of fungi, bacteria and methanotrophic bacteria) and nutrient contents (total and available carbon and nitrogen) were also determined. Both CO2 and CH4 were produced from ant nest samples, indicating that the aboveground parts of wood ant nests act as sources of both gases; in comparison, the forest floor produced about four times less CO2 and consumed rather than produced CH4 Fluxes of CH4 and CO2 were positively correlated with contents of available carbon and nitrogen.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: