Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Lanthanide photoluminescence (PL) emission has attracted much attention for technological and bioimaging applications because of its particularly interesting features, such as narrow emission bands and very long PL lifetimes. However, this emission process necessitates a preceding step of energy transfer from suitable antennas. While biocompatible applications require luminophores that are stable in aqueous media, most lanthanide-based emitters are quenched by water molecules.
View Article and Find Full Text PDFUnraveling cellular physiological processes via luminescent probes that target specific cellular microenvironments is quite challenging due to the uneven distribution of probes. Herein, we designed a new dynamic excimer (DYNEX) imaging method that involves the sensitive detection of nanosecond-scale dynamic molecular contacts of a fluorescent acridone derivative and reveals the cell microenvironment polarity. Using our method, we specifically tracked cell lipid droplets in fibroblast colon carcinoma cells.
View Article and Find Full Text PDFThis work is focused on unraveling the mechanisms responsible for the aggregation-induced enhanced emission and solid-state luminescence enhancement effects observed in star-shaped molecules based on 1,3,5-tris(styryl)benzene and tri(styryl)-s-triazine cores. To achieve this, the photophysical properties of this set of molecules were analyzed in three states: free molecules, molecular aggregates in solution, and the solid state. Different spectroscopy and microscopy experiments and DFT calculations were conducted to scrutinize the causative mechanisms of the luminescence enhancement phenomenon observed in some experimental conditions.
View Article and Find Full Text PDF2,4-Bis(1,3,7-trimethyl-pteridine-2,4(1H,3H)-dione-6-yl)-2,3-dihydro-2-methyl-1H-1,5-benzodiazepine (DLMBZD) has been prepared and its molecular and crystal structures have been determined from spectral and XRD data. The benzodiazepine ligand was reacted with zinc(ii), cadmium(ii) and mercury(ii) chloride, bromide and iodide to give complexes with general formula [M(DLMBZD)X]. The complexes have been synthesized and characterized by IR, NMR and elemental analysis.
View Article and Find Full Text PDFDensity functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative.
View Article and Find Full Text PDFAimed to optimize the ratio accuracy/computational cost, in this work we study the performance of three different theoretical methodologies in the calculation of the optical bandgap for a test set made of a number of poly(aryl-ethynylene)s related polymers. Infinite, ideal polymer chains were first optimized by means of periodic calculations. Different length oligomers were afterward generated by direct replication of the corresponding periodic structure and their optical bandgaps were calculated by means of different time dependent-density functional theory (TD-DFT) methodologies.
View Article and Find Full Text PDFJ Inorg Biochem
February 2015
The reactions of [RhCl(CO)(PPh3)2], [RhCl(CO)2]2 and [IrCl(CO)(PPh3)2] with different 5-nitrosopyrimidines afforded sixteen complexes which have been structurally characterized by elemental analysis, IR and NMR ((1)H and (13)C) spectral methods and luminescence spectroscopy. The crystal and molecular structures of [Rh(III)Cl(VIOH-1)2(PPh3)], [Rh(III)Cl(DVIOH-1)2(PPh3)] and [Rh(II)(DVIOH-1)2(PPh3)2] have been established from single crystal x-ray structure analyses. The three complexes are six-coordinated with both violurato ligands into an equatorial N5,O4-bidentate fashion, but with different mutually arrangements.
View Article and Find Full Text PDFEur J Med Chem
June 2013
The synthesis and molecular and supramolecular structures of the compound (6-amino-1-methyl-5-nitrosouracilato-N3)-triphenylphosphine-gold(I) with interesting abilities to inhibit tumor growth in an animal model of experimental glioma are reported. Thus, its antitumor properties, effects on both enzyme and non-enzyme antioxidant defense systems and the response of several biochemical biomarkers have been analyzed. After seven days of treatment, the gold compound decreased the tumor growth to ca.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2012
Multi-parameter scaling techniques, such as Scaled Quantum Mechanical (SQM) force field [J. Am. Chem.
View Article and Find Full Text PDFThe title compound, C(6)H(4)N(4)S(2)·C(3)H(7)NO, crystallizes in the monoclinic space group C 2/c with a = 26.673(5), b = 5.397(1), c = 16.
View Article and Find Full Text PDFJ Chem Phys
February 2010
In the present work, we have studied from a theoretical perspective the geometry and electronic properties of the series of related compounds 2,5-bis(phenylethynyl)-1,3,4-thiadiazole, 2,5-bis(phenylethynyl)-1,3,4-oxadiazole, and 2,5-bis(phenylethynyl)-1,2,4-triazole as candidates for electron-conducting polymers and compounds with desirable (opto)electronic properties. The effect of the ethynyl group (-C[Triple Bond]C-) on the structure and electronic properties was also studied. The influence of planarity on electrical conductivity has been studied by a natural-bond-orbital analysis.
View Article and Find Full Text PDF2,5-Bis(phenylethynyl)-1,3,4-thiadiazole (PhEtTh) and 2,5-diphenyl-1,3,4-thiadiazole (PhTh) are expected to be building blocks for polymer materials that could be employed to conduct electricity due to their narrow highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gaps. In this work, a theoretical, comparative study about the effect of the ethynyl group on the planarity and electrical conductivity of this kind of systems has been carried out. Thus, several ab initio (Hartree-Fock, Moller-Plesset) and DFT (B3LYP, B3PW91, M05, M05-2X) methods and basis sets (6-31G(*), 6-31G+G(**), 6-311G(**), cc-pVDZ, cc-pVTZ) have been tested.
View Article and Find Full Text PDFThe reactions of Cl with a series of linear thiols: 1-propanethiol (k(1)), 1-butanethiol (k(2)), and 1-pentanethiol (k(3)) were investigated as a function of temperature (in the range of 268-379 K) and pressure (in the range of 50-200 Torr) by laser photolysis-resonance fluorescence. Only 1-propanethiol has previously been studied, but at 1 Torr of total pressure. The derived Arrhenius expressions obtained using our kinetic data were as follows: k(1)=(3.
View Article and Find Full Text PDFThe molecular structure of methyl methanethiosulfonate, CH3SO2SCH3, has been determined in the gas phase from electron-diffraction data supplemented by ab initio (HF, MP2) and density functional theory (DFT) calculations using 6-31G(d), 6-311++G(d,p), and 6-311G(3df,3pd) basis sets. Both experimental and theoretical data indicate that although both anti and gauche conformers are possible by rotating about the S-S bond, the preferred conformation is gauche. The barrier to internal rotation in the CSSC skeleton has been calculated using the RHF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) methods as well as MP2 with a 6-31G(3df) basis set on sulfur and 6-31G(d) on C, H, and O.
View Article and Find Full Text PDFThe molecular structure of 2,6-dichlorostyrene has been analyzed at MP2 and DFT levels using different basis sets concluding in a nonplanar geometry. The influence of either the level of theory or the nature of the substituent has been assessed. The vinyl-phenyl torsion barrier has also been investigated as a function of level of theory.
View Article and Find Full Text PDF