Music listening often entails spontaneous perception and body movement to a periodic pulse-like meter. There is increasing evidence that this cross-cultural ability relates to neural processes that selectively enhance metric periodicities, even when these periodicities are not prominent in the acoustic stimulus. However, whether these neural processes emerge early in development remains largely unknown.
View Article and Find Full Text PDFThe extent of high-level perceptual processing during sleep remains controversial. In wakefulness, perception of periodicities supports the emergence of high-order representations such as the pulse-like meter perceived while listening to music. Electroencephalography (EEG) frequency-tagged responses elicited at envelope frequencies of musical rhythms have been shown to provide a neural representation of rhythm processing.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2021
Humans perceive and spontaneously move to one or several levels of periodic pulses (a meter, for short) when listening to musical rhythm, even when the sensory input does not provide prominent periodic cues to their temporal location. Here, we review a multi-levelled framework to understanding how external rhythmic inputs are mapped onto internally represented metric pulses. This mapping is studied using an approach to quantify and directly compare representations of metric pulses in signals corresponding to sensory inputs, neural activity and behaviour (typically body movement).
View Article and Find Full Text PDFWhen listening to music, people often perceive and move along with a periodic meter. However, the dynamics of mapping between meter perception and the acoustic cues to meter periodicities in the sensory input remain largely unknown. To capture these dynamics, we recorded the electroencephalography while nonmusician and musician participants listened to nonrepeating rhythmic sequences, where acoustic cues to meter frequencies either gradually decreased (from regular to degraded) or increased (from degraded to regular).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2018
Proc Natl Acad Sci U S A
August 2018
Music makes us move, and using bass instruments to build the rhythmic foundations of music is especially effective at inducing people to dance to periodic pulse-like beats. Here, we show that this culturally widespread practice may exploit a neurophysiological mechanism whereby low-frequency sounds shape the neural representations of rhythmic input by boosting selective locking to the beat. Cortical activity was captured using electroencephalography (EEG) while participants listened to a regular rhythm or to a relatively complex syncopated rhythm conveyed either by low tones (130 Hz) or high tones (1236.
View Article and Find Full Text PDFThe spontaneous ability to entrain to meter periodicities is central to music perception and production across cultures. There is increasing evidence that this ability involves selective neural responses to meter-related frequencies. This phenomenon has been observed in the human auditory cortex, yet it could be the product of evolutionarily older lower-level properties of brainstem auditory neurons, as suggested by recent recordings from rodent midbrain.
View Article and Find Full Text PDF