Modern biological research is increasingly informed by computational simulation experiments, which necessitate the development of methods for annotating, archiving, sharing, and reproducing the conducted experiments. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments.
View Article and Find Full Text PDFA fundamental challenge for personalized medicine is to capture enough of the complexity of an individual patient to determine an optimal way to keep them healthy or restore their health. This will require personalized computational models of sufficient resolution and with enough mechanistic information to provide actionable information to the clinician. Such personalized models are increasingly referred to as medical digital twins.
View Article and Find Full Text PDFIntroduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing.
Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms.
Medical digital twins are computational models of human biology relevant to a given medical condition, which are tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. In February 2023, an international group of experts convened for two days to discuss these challenges related to immune digital twins.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Computational models of gene regulations help to understand regulatory mechanisms and are extensively used in a wide range of areas, e.g., biotechnology or medicine, with significant benefits.
View Article and Find Full Text PDFIdentifying potential drug targets using metabolic modeling requires integrating multiple modeling methods and heterogeneous biological datasets, which can be challenging without efficient tools. We developed Constraint-based Optimization of Metabolic Objectives (COMO), a user-friendly pipeline that integrates multi-omics data processing, context-specific metabolic model development, simulations, drug databases and disease data to aid drug discovery. COMO can be installed as a Docker Image or with Conda and includes intuitive instructions within a Jupyter Lab environment.
View Article and Find Full Text PDFPurpose Of Review: Human cytomegalovirus (HCMV), while asymptomatic in most, causes significant complications during fetal development, following transplant or in immunosuppressed individuals. The host-virus interactions regulating viral latency and reactivation and viral control of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. Understanding these processes is essential to controlling infection and can be leveraged as a novel approach for understanding basic cell biology.
View Article and Find Full Text PDFAcquiring computational modeling and simulation skills has become ever more critical for students in life sciences courses at the secondary and tertiary levels. Many modeling and simulation tools have been created to help instructors nurture those skills in their classrooms. Understanding the factors that may motivate instructors to use such tools is crucial to improve students' learning, especially for having authentic modeling and simulation learning experiences.
View Article and Find Full Text PDFDendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique ability to mediate inflammatory responses of the immune system. Given the critical role of DCs in shaping immunity, they present an attractive avenue as a therapeutic target to program the immune system and reverse immune disease disorders. To ensure appropriate immune response, DCs utilize intricate and complex molecular and cellular interactions that converge into a seamless phenotype.
View Article and Find Full Text PDFIncreasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries.
View Article and Find Full Text PDFis a highly infectious zoonotic pathogen with as few as 10 organisms causing tularemia, a disease that is fatal if untreated. Although subspecies (type A) and subspecies (type B) share over 99.5% average nucleotide identity, notable differences exist in genomic organization and pathogenicity.
View Article and Find Full Text PDFComputational simulation experiments increasingly inform modern biological research, and bring with them the need to provide ways to annotate, archive, share and reproduce the experiments performed. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments.
View Article and Find Full Text PDFQuantitative systems pharmacology (QSP) modeling is applied to address essential questions in drug development, such as the mechanism of action of a therapeutic agent and the progression of disease. Meanwhile, machine learning (ML) approaches also contribute to answering these questions via the analysis of multi-layer 'omics' data such as gene expression, proteomics, metabolomics, and high-throughput imaging. Furthermore, ML approaches can also be applied to aspects of QSP modeling.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
February 2022
Quantitative systems pharmacology (QSP) is a quantitative and mechanistic platform describing the phenotypic interaction between drugs, biological networks, and disease conditions to predict optimal therapeutic response. In this meta-analysis study, we review the utility of the QSP platform in drug development and therapeutic strategies based on recent publications (2019-2021). We gathered recent original QSP models and described the diversity of their applications based on therapeutic areas, methodologies, software platforms, and functionalities.
View Article and Find Full Text PDFWe need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources.
View Article and Find Full Text PDFImmune responses rely on a complex adaptive system in which the body and infections interact at multiple scales and in different compartments. We developed a modular model of CD4+ T cells, which uses four modeling approaches to integrate processes at three spatial scales in different tissues. In each cell, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models.
View Article and Find Full Text PDFComputational models of biological systems can exploit a broad range of rapidly developing approaches, including novel experimental approaches, bioinformatics data analysis, emerging modelling paradigms, data standards and algorithms. A discussion about the most recent advances among experts from various domains is crucial to foster data-driven computational modelling and its growing use in assessing and predicting the behaviour of biological systems. Intending to encourage the development of tools, approaches and predictive models, and to deepen our understanding of biological systems, the Community of Special Interest (COSI) was launched in Computational Modelling of Biological Systems (SysMod) in 2016.
View Article and Find Full Text PDFRecent political unrest has highlighted the importance of understanding the short- and long-term effects of gamma-radiation exposure on human health and survivability. In this regard, effective treatment for acute radiation syndrome (ARS) is a necessity in cases of nuclear disasters. Here, we propose 20 therapeutic targets for ARS identified using a systematic approach that integrates gene coexpression networks obtained under radiation treatment in humans and mice, drug databases, disease-gene association, radiation-induced differential gene expression, and literature mining.
View Article and Find Full Text PDFUnderstanding metabolic function requires knowledge of the dynamics, interdependence, and regulation of metabolic networks. However, multiple professional societies have recognized that most undergraduate biochemistry students acquire only a surface-level understanding of metabolism. We hypothesized that guiding students through interactive computer simulations of metabolic systems would increase their ability to recognize how individual interactions between components affect the behavior of a system under different conditions.
View Article and Find Full Text PDFCD4 T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immune-related diseases. CD4 T cells' metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease.
View Article and Find Full Text PDFTrends Mol Med
February 2021
The coronavirus disease 2019 (COVID-19) pandemic not only challenged deeply-rooted daily patterns but also put a spotlight on the role of computational modeling in science and society. Amid the impromptu upheaval of in-person education across the world, this article aims to articulate the need to train students in computational and systems biology using research-grade technologies.
View Article and Find Full Text PDF