The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed , that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters.
View Article and Find Full Text PDFCarbohydrates are common co-solutes for the stabilization of proteins. The effect of carbohydrate solutions on the stability of collagen, the most abundant protein in mammals, is, however, underexplored. In this work, we studied the thermal stability of collagen triple helices derived from a molecularly defined collagen model peptide (CMP), Ac-(Pro-Hyp-Gly) -NH , in solutions of six common mono- and disaccharides.
View Article and Find Full Text PDFNature uses elaborate methods to control protein assembly, including that of heterotrimeric collagen. Here, we established design principles for the composition and register-selective assembly of synthetic collagen heterotrimers. The assembly code enabled the self-sorting of eight different strands into three─out of 512 possible─triple helices via complementary (4)-aminoproline and aspartate residues.
View Article and Find Full Text PDFBiomacromolecules
September 2023
N-terminal acylation is a common tool for the installation of functional moieties (e.g., sensors or bioactive molecules) on collagen model peptides (CMPs).
View Article and Find Full Text PDFCollagen model peptides (CMPs) consisting of proline-(2S,4R)-hydroxyproline-glycine (POG) repeats have provided a breadth of knowledge of the triple helical structure of collagen, the most abundant protein in mammals. Predictive tools for triple helix stability have, however, lagged behind since the effect of CMPs with different frames ([POG] , [OGP] , or [GPO] ) and capped or uncapped termini have so far been underestimated. Here, we elucidated the impact of the frame, terminal functional group and its charge on the stability of collagen triple helices.
View Article and Find Full Text PDFCollagen model peptides (CMPs), composed of proline-(2,4)-hydroxyproline-glycine (POG) repeat units, have been extensively used to study the structure and stability of triple-helical collagen─the dominant structural protein in mammals─at the molecular level. Despite the more than 50-year history of CMPs and numerous studies on the relationship between the composition of single-stranded CMPs and the thermal stability of the assembled triple helices, little attention has been paid to the effects arising from their terminal residues. Here, we show that frame-shifted CMPs, which share POG repeat units but terminate with P, O, or G, form triple helices with vastly different thermal stabilities.
View Article and Find Full Text PDFOptical imaging of changes in the membrane potential of living cells can be achieved by means of fluorescent voltage-sensitive dyes (VSDs). A particularly challenging task is to efficiently deliver these highly lipophilic probes to specific neuronal subpopulations in brain tissue. We have tackled this task by designing a solubilizing, hydrophilic polymer platform that carries a high-affinity ligand for a membrane protein marker of interest and a fluorescent VSD.
View Article and Find Full Text PDFMitragynine (MG) is the most abundant alkaloid component of the psychoactive plant material "kratom", which according to numerous anecdotal reports shows efficacy in self-medication for pain syndromes, depression, anxiety, and substance use disorders. We have developed a synthetic method for selective functionalization of the unexplored C11 position of the MG scaffold (C6 position in indole numbering) via the use of an indole-ethylene glycol adduct and subsequent iridium-catalyzed borylation. Through this work we discover that C11 represents a key locant for fine-tuning opioid receptor signaling efficacy.
View Article and Find Full Text PDFThe bark beetle feeds mainly on the shrub The range of extends from Spain in the south to southern Sweden, Denmark, and Scotland in the north. Its range to the east extends to Poland, Slovakia, and Hungary, but single localities are known further east in Romania, Bulgaria, and Greece. It is clear that the range of the beetle matches that of its main host.
View Article and Find Full Text PDFVoltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. The impact of these highly lipophilic sensors has, however, been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a nongenetic molecular platform for cell- and molecule-specific targeting of synthetic VSDs in the brain.
View Article and Find Full Text PDFDriving forces of anion binding in water in contrast to nonpolar environments are of high interest because of their relevance to biology and medicine. Here we report a neutral bambusuril macrocycle (1), soluble in both water and nonpolar solvents due to decoration with 12 polyethylene glycol-based substituents. The new bambusuril has the highest affinity for I in pure water ever reported for a synthetic macrocycle relying on hydrogen bonding interactions rather than metal coordination or Coulombic forces.
View Article and Find Full Text PDF