All-trans-retinoic acid (atRA) is a potent ligand that regulates gene expression and is used to treat several skin disorders. Hyaluronic acid (HA) was previously conjugated with atRA (HA-atRA) to obtain a novel amphiphilic compound. HA-atRA forms micelles that incorporate hydrophobic molecules and facilitate their transport through the skin.
View Article and Find Full Text PDFThis work concerns the chemical modification of medium molecular weight hyaluronan for ophthalmic applications. The synthesis of amphiphilic HA with dodecanoyl moities was carried out under mild aqueous conditions. Perfect control of the degree of substitution was obtained by varying the molar ratio of activated fatty acid used in the reaction feed.
View Article and Find Full Text PDFHyaluronan (HA) films exhibit properties suitable for medical applications, but the solubility of HA limits their use in aqueous environments. This can be overcome by modifying HA with hydrophobic side groups that enable physical cross-linking. In this work, we present water insoluble free-standing films from lauroyl modified HA as novel biomaterials with properties tuneable by the degree of HA substitution.
View Article and Find Full Text PDFSynthetic glucocorticoids (GC) are essential for the treatment of a broad range of inflammatory diseases. However, their use is limited by target related adverse effects on, e.g.
View Article and Find Full Text PDFAlthough the anti-inflammatory role of the A2a receptor is well established, controversy remains with regard to the therapeutic value for A2a agonists in treatment of inflammatory lung diseases, also as a result of unwanted A2a-mediated cardiovascular effects. In this paper, we describe the discovery and characterization of a new, potent and selective A2a agonist (compound 2) with prolonged lung retention and limited systemic exposure following local administration. To support the lead optimization chemistry program with compound selection and profiling, multiple in vitro and in vivo assays were used, characterizing compound properties, pharmacodynamics (PD), and drug concentrations.
View Article and Find Full Text PDFA drug discovery program in search of novel 5-lipoxygenase activating protein (FLAP) inhibitors focused on driving a reduction in lipophilicity with maintained or increased ligand lipophilic efficiency (LLE) compared to previously reported compounds led to the discovery of AZD6642 (15b). Introduction of a hydrophilic tetrahydrofuran (THF) ring at the stereogenic central carbon atom led to a significant shift in physicochemical property space. The structure-activity relationship exploration and optimization of DMPK properties leading to this compound are described in addition to pharmacokinetic analysis and an investigation of the pharmacokinetic (PK)-pharmacodynamic (PD) relationship based on ex vivo leukotriene B4 (LTB4) levels in dog.
View Article and Find Full Text PDFInhibition of AMP deaminase (AMPD) holds the potential to elevate intracellular adenosine and AMP levels and, therefore, to augment adenosine signaling and activation of AMP-activated protein kinase (AMPK). To test the latter hypothesis, novel AMPD pan inhibitors were synthesized and explored using a panel of in vitro, ex vivo, and in vivo models focusing on confirming AMPD inhibitory potency and the potential of AMPD inhibition to improve glucose control in vivo. Repeated dosing of selected inhibitors did not improve glucose control in insulin-resistant or diabetic rodent disease models.
View Article and Find Full Text PDFInhibition of acetyl-CoA carboxylases has the potential for modulating long chain fatty acid biosynthesis and mitochondrial fatty acid oxidation. Hybridization of weak inhibitors of ACC2 provided a novel, moderately potent but lipophilic series. Optimization led to compounds 33 and 37, which exhibit potent inhibition of human ACC2, 10-fold selectivity over inhibition of human ACC1, good physical and in vitro ADME properties and good bioavailability.
View Article and Find Full Text PDFTachykinin NK(2) receptor antagonists are potentially beneficial in treating various disorders including irritable bowel syndrome, urinary incontinence, depression and anxiety. The current study evaluates the frequency of single nucleotide polymorphisms (SNPs) in the human NK(2) receptor gene (TACR2). In addition, the potency of the endogenous peptide agonist neurokinin A (NKA), and the small molecule antagonists saredutant (NK(2)-selective) and ZD6021 (pan-NK antagonist) at the various NK(2) receptor protein variants were determined.
View Article and Find Full Text PDFThe present study investigates the pharmacology of the cloned neurokinin 1 receptor from the gerbil (gNK(1)R), a species claimed to have human-like NK(1)R (hNK(1)R) pharmacology. The amino acid sequence of NK(1)R was cloned. The hNK(1)R, rat NK(1)R (rNK(1)R), gNK(1)R and mutants of the gNK(1)R were expressed in CHO cells.
View Article and Find Full Text PDF