Glioblastoma is the most frequent and aggressive brain tumor in adults. This study aims to evaluate the expression and prognostic impact of CD99, a membrane glycoprotein involved in cellular migration and invasion. In a cohort of patients with glioblastoma treated with surgery, radiotherapy and temozolomide, we retrospectively analyzed tumor expression of CD99 by immunohistochemistry (IHC) and by quantitative real-time polymerase chain reaction (qRT-PCR) for both the wild type (CD99wt) and the truncated (CD99sh) isoforms.
View Article and Find Full Text PDFCarcinoembryonic antigen cell adhesion molecule-1 (CEACAM1), a homotypic cell adhesion molecule glycoprotein with apical expression on normal epithelial cells and activated lymphocytes, is overexpressed on many tumors and acts as an inhibitory receptor on NK cells, preventing their killing of CEACAM1 positive tumors. Production of humanized anti-CEACAM1 antibodies to block the inhibitory activity of CEACAM1 for immunotherapy and immunoimaging. Starting from a scFv, a fully human intact anti-CEACAM1 (DIA 12.
View Article and Find Full Text PDFThe future of biomaterial production will leverage biotechnology based on the domestication of cells as biological factories. Plants, algae, and bacteria can produce low-environmental impact biopolymers. Here, two strategies were developed to produce a biopolymer derived from a bioengineered vacuolar storage protein of the common bean (phaseolin; PHSL).
View Article and Find Full Text PDFFungal infections are increasingly impacting on the health of the population and particularly on subjects with a compromised immune system. The resistance phenomenon and the rise of new species carrying sometimes intrinsic and multi-drug resistance to the most commonly used antifungal drugs are greatly concerning healthcare organizations. As a result of this situation, there is growing interest in the development of therapeutic agents against pathogenic fungi.
View Article and Find Full Text PDFThe resistance and the birth of new intrinsic and multidrug-resistant pathogenic species like C. auris is creating great concern in the antifungal world. Given the limited drug arsenal and the lack of effectiveness of the available compounds, there is an urgent need for innovative approaches.
View Article and Find Full Text PDFInvasive fungal infections mainly affect patients undergoing transplantation, surgery, neoplastic disease, immunocompromised subjects and premature infants, and cause over 1.5 million deaths every year. The most common fungi isolated in invasive diseases are Candida spp.
View Article and Find Full Text PDFHost-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses.
View Article and Find Full Text PDFExcessive production of immunoglobulins (Ig) causes endoplasmic reticulum (ER) stress and triggers the unfolded protein response (UPR). Hypergammaglobulinemia and lymphadenopathy are hallmarks of murine AIDS that develops in mice infected with the LP-BM5 murine leukemia retrovirus complex. In these mice, Th2 polarization and aberrant humoral response have been previously correlated to altered intracellular redox homeostasis.
View Article and Find Full Text PDFFungal infections have aroused much interest over the last years because of their involvement in several human diseases. Immunocompromission due to transplant-related therapies and malignant cancer treatments are risk factors for invasive fungal infections, but also aggressive surgery, broad-spectrum antibiotics and prosthetic devices are frequently associated with infectious diseases. Current therapy is based on the administration of antifungal drugs, but the occurrence of resistant strains to the most common molecules has become a serious health-care problem.
View Article and Find Full Text PDFAntibody humanization is a key step in the preclinical phase of the development of therapeutic antibodies, originally developed and tested in non-human models (most typically, in mouse). The standard technique of Complementarity-Determining Regions (CDR) grafting into human Framework Regions of germline sequences has some important drawbacks, in that the resulting sequences often need further back-mutations to ensure functionality and/or stability. Here we propose a new method to characterize the statistical distribution of the sequences of the variable regions of human antibodies, that takes into account phenotypical correlations between pairs of residues, both within and between chains.
View Article and Find Full Text PDF