Single-chambered (monothalamous) foraminifera are poorly known compared to their multichambered relatives. In this first study of monothalamids from Greenland, we describe one new genus and two new species belonging to different clades from the Nuuk fjord system. Nujappikia idaliae Gooday & Holzmann gen.
View Article and Find Full Text PDFMonitoring biodiversity is essential to assess the impacts of increasing anthropogenic activities in marine environments. Traditionally, marine biomonitoring involves the sorting and morphological identification of benthic macro-invertebrates, which is time-consuming and taxonomic-expertise demanding. High-throughput amplicon sequencing of environmental DNA (eDNA metabarcoding) represents a promising alternative for benthic monitoring.
View Article and Find Full Text PDFA substantial nitrate pool is stored within living cells in various benthic marine environments. The fate of this bioavailable nitrogen differs according to the organisms managing the intracellular nitrate (ICN). While some light has been shed on the nitrate carried by diatoms and foraminiferans, no study has so far followed the nitrate kept by gromiids.
View Article and Find Full Text PDFThe measurement of species diversity represents a powerful tool for assessing the impacts of human activities on marine ecosystems. Traditionally, the impact of fish farming on the coastal environment is evaluated by monitoring the dynamics of macrobenthic infaunal populations. However, taxonomic sorting and morphology-based identification of the macrobenthos demand highly trained specialists and are extremely time-consuming and costly, making it unsuitable for large-scale biomonitoring efforts involving numerous samples.
View Article and Find Full Text PDFBenthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulate and respire nitrates through denitrification. The widespread occurrence among distantly related organisms suggests an ancient origin of the trait.
View Article and Find Full Text PDFShallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans.
View Article and Find Full Text PDFBenthic foraminifera are unicellular eukaryotes found abundantly in many types of marine sediments. Many species survive and possibly reproduce in anoxic habitats, but sustainable anaerobic metabolism has not been previously described. Here we demonstrate that the foraminifer Globobulimina pseudospinescens accumulates intracellular nitrate stores and that these can be respired to dinitrogen gas.
View Article and Find Full Text PDFFossil Foraminifera appear in the Early Cambrian, at about the same time as the first skeletonized metazoans. However, due to the inadequate preservation of early unilocular (single-chambered) foraminiferal tests and difficulties in their identification, the evolution of early foraminifers is poorly understood. By using molecular data from a wide range of extant naked and testate unilocular species, we demonstrate that a large radiation of nonfossilized unilocular Foraminifera preceded the diversification of multilocular lineages during the Carboniferous.
View Article and Find Full Text PDF