Publications by authors named "Tomas Bzdusek"

We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in a negatively curved plane. Because of their distinct translation group structure, such lattices are associated with a high-dimensional reciprocal space. In addition, they support non-Abelian Bloch states which, unlike conventional Bloch states, acquire a matrix-valued Bloch factor under lattice translations.

View Article and Find Full Text PDF

Wave functions on periodic lattices are commonly described by Bloch band theory. Besides Abelian Bloch states labeled by a momentum vector, hyperbolic lattices support non-Abelian Bloch states that have so far eluded analytical treatments. By adapting the solid-state-physics notions of supercells and zone folding, we devise a method for the systematic construction of non-Abelian Bloch states.

View Article and Find Full Text PDF

Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with hyperbolic lattices. Here we introduce and experimentally realize hyperbolic matter as a paradigm for topological states through topolectrical circuit networks relying on a complex-phase circuit element.

View Article and Find Full Text PDF

Recently, hyperbolic lattices that tile the negatively curved hyperbolic plane emerged as a new paradigm of synthetic matter, and their energy levels were characterized by a band structure in a four- (or higher-) dimensional momentum space. To explore the uncharted topological aspects arising in hyperbolic band theory, we here introduce elementary models of hyperbolic topological band insulators: the hyperbolic Haldane model and the hyperbolic Kane-Mele model; both obtained by replacing the hexagonal cells of their Euclidean counterparts by octagons. Their nontrivial topology is revealed by computing topological invariants in both position and momentum space.

View Article and Find Full Text PDF
Article Synopsis
  • The Laplace operator is crucial for understanding various physical systems, including heat, fluids, and fields, with its behavior influenced by the curvature of space.
  • This research demonstrates a significant difference in the spectral ordering of Laplacian eigenstates between hyperbolic and flat geometries using experiments on a device simulating hyperbolic space.
  • The findings provide a method to explore dynamics in negatively curved spaces and facilitate the study of emerging concepts in topological hyperbolic matter.
View Article and Find Full Text PDF

We introduce the exceptional topological insulator (ETI), a non-Hermitian topological state of matter that features exotic non-Hermitian surface states which can only exist within the three-dimensional topological bulk embedding. We show how this phase can evolve from a Weyl semimetal or Hermitian three-dimensional topological insulator close to criticality when quasiparticles acquire a finite lifetime. The ETI does not require any symmetry to be stabilized.

View Article and Find Full Text PDF

Being Wannierizable is not the end of the story for topological insulators. We introduce a family of topological insulators that would be considered trivial in the paradigm set by the tenfold way, topological quantum chemistry, and the method of symmetry-based indicators. Despite having a symmetric, exponentially localized Wannier representation, each Wannier function cannot be completely localized to a single primitive unit cell in the bulk.

View Article and Find Full Text PDF

Electron energy bands of crystalline solids generically exhibit degeneracies called band-structure nodes. Here, we introduce non-Abelian topological charges that characterize line nodes inside the momentum space of crystalline metals with space-time inversion (𝒫𝒯) symmetry and with weak spin-orbit coupling. We show that these are quaternion charges, similar to those describing disclinations in biaxial nematics.

View Article and Find Full Text PDF

We show that the Nielsen-Ninomiya no-go theorem still holds on a Floquet lattice: there is an equal number of right-handed and left-handed Weyl points in a three-dimensional Floquet lattice. However, in the adiabatic limit, where the time evolution of the low-energy subspace is decoupled from the high-energy subspace, we show that the bulk dynamics in the low-energy subspace can be described by Floquet bands with extra left- or right-handed Weyl points, despite the no-go theorem. Assuming adiabatic evolution of two bands, we show that the difference of the number of right-handed and left-handed Weyl points equals twice the winding number of the adiabatic Floquet operator over the Brillouin zone.

View Article and Find Full Text PDF

According to a widely held paradigm, a pair of Weyl points with opposite chirality mutually annihilate when brought together. In contrast, we show that such a process is strictly forbidden for Weyl points related by a mirror symmetry, provided that an effective two-band description exists in terms of orbitals with opposite mirror eigenvalue. Instead, such a pair of Weyl points convert into a nodal loop inside a symmetric plane upon the collision.

View Article and Find Full Text PDF

The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories.

View Article and Find Full Text PDF