Publications by authors named "Tomas Blom"

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, necessitating the identification of novel therapeutic targets. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is involved in biological processes critical to cancer progression, such as regulation of solute carrier transporter proteins and metabolic pathways, including mTORC1. However, the metabolic processes governed by LAPTM4B and its role in oncogenesis remain unknown.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a rare malignant bone tumor but is one leading cause of cancer mortality in childhood and adolescence. Cancer metastasis accounts for the primary reason for treatment failure in OS patients. The dynamic organization of the cytoskeleton is fundamental for cell motility, migration, and cancer metastasis.

View Article and Find Full Text PDF

The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells.

View Article and Find Full Text PDF

Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is a four-membrane spanning ceramide interacting protein that regulates mTORC1 signaling. Here, we show that LAPTM4B is sorted into intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs) and released in small extracellular vesicles (sEVs) into conditioned cell culture medium and human urine. Efficient sorting of LAPTM4B into ILV membranes depends on its third transmembrane domain containing a sphingolipid interaction motif (SLim).

View Article and Find Full Text PDF

Studies of lysosome associated protein transmembrane 4B (LAPTM4B) have mainly focused on the 35-kDa isoform and its association with poor prognosis in cancers. Here, by employing a novel monoclonal antibody, the authors found that the 24-kDa LAPTM4B isoform predominated in most, both healthy and malignant, human cells and tissues studied. LAPTM4B-24 lacks the extreme N-terminus and, contrary to LAPTM4B-35, failed to promote cell migration.

View Article and Find Full Text PDF

Membrane proteins are functionally regulated by the composition of the surrounding lipid bilayer. The late endosomal compartment is a central site for the generation of ceramide, a bioactive sphingolipid, which regulates responses to cell stress. The molecular interactions between ceramide and late endosomal transmembrane proteins are unknown.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive progressive encephalopathies caused by mutations in at least 14 different genes. Despite extensive studies performed in different NCL animal models, the molecular mechanisms underlying neurodegeneration in NCLs remain poorly understood. To model NCL in human cells, we generated induced pluripotent stem cells (iPSCs) by reprogramming skin fibroblasts from a patient with CLN5 (ceroid lipofuscinosis, neuronal, 5) disease, the late infantile variant form of NCL.

View Article and Find Full Text PDF

Ceramide and sphingosine and their phosphorylated counterparts are recognized as "bioactive sphingolipids" and modulate membrane integrity, the activity of enzymes, or act as ligands of G protein-coupled receptors. The subcellular distribution of the bioactive sphingolipids is central to their function as the same lipid can mediate diametrically opposite effects depending on its location. To ensure that these lipids are present in the right amount and in the appropriate organelles, cells employ selective lipid transport and compartmentalize sphingolipid-metabolizing enzymes to characteristic subcellular sites.

View Article and Find Full Text PDF

Lipids are often introduced into cell membranes directly from solvent or from lipophilic artificial carriers, such as cyclodextrins. A physiological lipid entry route into mammalian cells is via lipoprotein mediated uptake. In this review, we discuss the introduction of BODIPY-labeled sterol and sphingolipid analogs into mammalian cells via high- or low-density lipoproteins, and the novel findings made by using this strategy.

View Article and Find Full Text PDF

Lysosome-associated protein transmembrane-4b (LAPTM4B) associates with poor prognosis in several cancers, but its physiological function is not well understood. Here we use novel ceramide probes to provide evidence that LAPTM4B interacts with ceramide and facilitates its removal from late endosomal organelles (LEs). This lowers LE ceramide in parallel with and independent of acid ceramidase-dependent catabolism.

View Article and Find Full Text PDF

Caveolae are plasma membrane invaginations enriched in sterols and sphingolipids. Sphingosine kinase 1 (SK1) is an oncogenic protein that converts sphingosine to sphingosine 1-phosphate (S1P), which is a messenger molecule involved in calcium signaling. Caveolae contain calcium responsive proteins, but the effects of SK1 or S1P on caveolar calcium signaling have not been investigated.

View Article and Find Full Text PDF

Mammalian cells acquire cholesterol, a major membrane constituent, via low-density lipoprotein (LDL) uptake. However, the mechanisms by which LDL cholesterol reaches the plasma membrane (PM) have remained obscure. Here, we applied LDL labeled with BODIPY cholesteryl linoleate to identify this pathway in living cells.

View Article and Find Full Text PDF

N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane.

View Article and Find Full Text PDF

The late endosomal/lysosomal compartment (LE/LY) plays a key role in sphingolipid breakdown, with the last degradative step catalyzed by acid ceramidase. The released sphingosine can be converted to ceramide in the ER and transported by ceramide transfer protein (CERT) to the Golgi for conversion to sphingomyelin. The mechanism by which sphingosine exits LE/LY is unknown but Niemann-Pick C1 protein (NPC1) has been suggested to be involved.

View Article and Find Full Text PDF

CLN5 disease, late infantile variant phenotype neuronal ceroid lipofuscinosis, is a severe neurodegenerative disease caused by mutations in the CLN5 gene, which encodes a lysosomal protein of unknown function. Cln5-deficiency in mice leads to loss of thalamocortical neurons, and glial activation, but the underlying mechanisms are poorly understood. We have now studied the gene expression of Cln5 in the mouse brain and show that it increases gradually with age and differs between neurons and glia, with the highest expression in microglia.

View Article and Find Full Text PDF

Eukaryotic cells can synthesize thousands of different lipid molecules that are incorporated into their membranes. This involves the activity of hundreds of enzymes with the task of creating lipid diversity. In addition, there are several, typically redundant, mechanisms to transport lipids from their site of synthesis to other cellular membranes.

View Article and Find Full Text PDF

Background: Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a multitude of cellular functions, including cell proliferation, survival, migration and angiogenesis. S1P mediates its effects either by signaling through G protein-coupled receptors (GPCRs) or through an intracellular mode of action. In this study, we have investigated the mechanism behind S1P-induced survival signalling.

View Article and Find Full Text PDF

Rationale: The synthetic sphingosine analog FTY720 is undergoing clinical trials as an immunomodulatory compound, acting primarily via sphingosine 1-phosphate receptor activation. Sphingolipid and cholesterol homeostasis are closely connected but whether FTY720 affects atherogenesis in humans is not known.

Objective: We examined the effects of FTY720 on the processing of scavenged lipoprotein cholesterol in human primary monocyte-derived macrophages.

View Article and Find Full Text PDF

The mammalian canonical transient receptor channels (TRPCs) are considered to be candidates for store-operated calcium channels (SOCCs). Many studies have addressed how TRPC3 channels are affected by depletion of intracellular calcium stores. Conflicting results have been shown for TRPC3 regarding its function, and this has been linked to its level of expression in various systems.

View Article and Find Full Text PDF

Among the group of bioactive sphingolipids, sphingosylphosphorylcholine (SPC) has been known to induce both antiproliferative and proliferative effects depending on cell type. In the present investigation we show that SPC (1-10 microM) reduced the proliferation of FRO cells (an anaplastic thyroid carcinoma cell line) in a concentration dependent manner. The effect was pertussis toxin insensitive, and independent of phospholipase C, protein kinase C, p38 kinase, or jun kinase.

View Article and Find Full Text PDF

Intracellular pathways leading to neuronal degeneration are poorly understood in the juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease), caused by mutations in the CLN3 gene. To elucidate the early pathology, we carried out comparative global transcript profiling of the embryonic, primary cultures of the Cln3-/- mouse neurons. Statistical and functional analyses delineated three major cellular pathways or compartments affected: mitochondrial glucose metabolism, cytoskeleton, and synaptosome.

View Article and Find Full Text PDF

Several sphingolipid derivatives, including sphingosylphosphorylcholine (SPC), regulate a multitude of biological processes. In the present study we show that both human thyroid cancer cells (FRO cells) and normal human thyroid cells express G protein-coupled receptor 4 (GPR4) and ovarian cancer G protein-coupled receptor 1 (OGR1), putative SPC-specific receptors. In FRO cells SPC evoked a concentration-dependent increase in intracellular free calcium concentration ([Ca2+]i) in a calcium containing, but not in a calcium-free buffer.

View Article and Find Full Text PDF

We have previously shown that sphingosine inhibits depolarisation-induced calcium influx through voltage-operated calcium channels (VOCCs) in GH(4)C(1) cells, whereas sphingosine-1-phosphate (S1P) does not. In the present study we investigated whether sphingosine kinase modulates VOCC activity in GH(4)C(1) cells by removing inhibitory sphingosine. Sphingosine and the structurally similar sphingosine kinase inhibitor dimethylsphingosine (DMS) both rapidly attenuated the calcium influx evoked by depolarisation.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) regulates many cellular functions, such as migration, differentiation and growth. The effects of S1P are thought to be primarily mediated by G-protein coupled receptors, but an intracellular function as a calcium releasing second messenger has also been proposed. Here we show that in HEK-293 cells, exogenous S1P mobilises sequestered calcium by a mechanism primarily dependent on the phospholipase C (PLC)/inositol 1,4,5-trisphosphate (IP3) pathway, and secondarily on the subsequent synthesis of intracellular S1P.

View Article and Find Full Text PDF