Publications by authors named "Tomas Bertok"

Post-translational modifications of proteins play an important role in their stability, solubility and in vivo function. Also, for several reasons, such as the Golgi fragmentation during cancerogenesis, glycosylation as the most common modification is especially promising in offering high cancer specificity which, in combination with tissue-specific biomarkers available in the case of prostate diseases (PSA, PSMA, PAP), may lead to the development of novel oncodiagnostic approaches. In this review, we present the importance of subterminal glycan structures based on the N-acetylated monosaccharides GlcNAc and GalNAc in N- and also O-glycans, structures of which they are a component (LacNAc, LacdiNAc, branched structures).

View Article and Find Full Text PDF

Background: The medication used to treat benign prostate hyperplasia (BPH), a common condition in men over 50 years of age, can alter the levels of biomarkers used in prostate cancer detection. Commonly used medications for BPH include alpha-blockers, 5-alpha reductase inhibitors (5-ARIs), and muscarinic antagonists. We studied the impact of these drugs on total prostate-specific antigen (tPSA), free PSA (fPSA), [-2]proPSA, fPSA/tPSA ratio, and the Prostate Health Index (PHI), as well as novel potential biomarkers in the form of glycan composition of fPSA.

View Article and Find Full Text PDF

This review briefly introduces readers to an area where glycomics meets modern oncodiagnostics with a focus on the analysis of sialic acid (Neu5Ac)-terminated structures. We present the biochemical perspective of aberrant sialylation during tumourigenesis and its significance, as well as an analytical perspective on the detection of these structures using different approaches for diagnostic and therapeutic purposes. We also provide a comparison to other established liquid biopsy approaches, and we mathematically define an early-stage cancer based on the overall prognosis and effect of these approaches on the patient's quality of life.

View Article and Find Full Text PDF

The glycoprofiling of two proteins, the free form of the prostate-specific antigen (fPSA) and zinc-α-2-glycoprotein (ZA2G), was assessed to determine their suitability as prostate cancer (PCa) biomarkers. The glycoprofiling of proteins was performed by analysing changes in the glycan composition on fPSA and ZA2G using lectins (proteins that recognise glycans, i.e.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e.

View Article and Find Full Text PDF

This review provides a comprehensive overview of our understanding of the role that glycans play in the formation, loading and release of extracellular vesicles (EVs). The capture of EVs (typically with a size of 100-200 nm) is described, including approaches based on glycan recognition with glycan-based analysis offering highly sensitive detection of EVs. Furthermore, detailed information is provided about the use of EV glycans and glycan processing enzymes as potential biomarkers, therapeutic targets or tools applied for regenerative medicine.

View Article and Find Full Text PDF

Screen-printing technology is a game changer in many fields including electrochemical biosensing. Two-dimensional nanomaterial MXene TiCT was integrated as a nanoplatform to immobilise enzyme sarcosine oxidase (SOx) onto the interface of screen-printed carbon electrodes (SPCEs). A miniaturised, portable, and cost-effective nanobiosensor was constructed using chitosan as a biocompatible glue for the ultrasensitive detection of prostate cancer biomarker sarcosine.

View Article and Find Full Text PDF

Exosomes are considered to be a rich source of biomarkers, hence in this article we examine the best procedure for their isolation. We examine several isolation procedures, exosome storage conditions and other conditions affecting exosome production by prostate cell lines. We selected four different commercially available kits based on different principles to achieve exosome isolation, the best being magnetic-based.

View Article and Find Full Text PDF

Background: Testicular cancer (TC) is the most frequent type of cancer among young men aged between 15 and 34 years. TC is treated using cisplatin, but 3%-5% of TC patients fail to respond to cisplatin, with a very bad to fatal prognosis. Accordingly, it is most important to quickly and readily identify those TC patients who are resistant to cisplatin treatment.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common types of cancer among men and women worldwide. Efforts are currently underway to find novel and more cancer-specific biomarkers that could be detected in a non-invasive way. The analysis of aberrant glycosylation of serum glycoproteins is a way to discover novel diagnostic and prognostic CRC biomarkers.

View Article and Find Full Text PDF

Introduction: Breast cancer (BCa) is the most common cancer type diagnosed in women and 5 most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality.

Areas Covered: In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the most common cancer types among men and also acommon cause of death globally. With an increasing incidence, there is aneed for low-cost, reliable biomarkers present in samples, which could be provided non-invasively (without a need to perform prostate biopsy). Glycosylation changes of free-PSA (fPSA) are considered cancer-specific, while the level of different PSA forms can increase under other than cancerous conditions.

View Article and Find Full Text PDF

Two-dimensional layered nanomaterial TiCT (a member of the MXene family) was used to immobilise enzyme sarcosine oxidase to fabricate a nanostructured biosensor. The device was applied for detection of sarcosine, a potential prostate cancer biomarker, in urine for the first time. The morphology and structures of MXene have been characterised by atomic force microscopy (AFM) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

This is the first work focused on glycoprofiling of whole N- and O- glycome using lectins in an array format applied for analysis of serum samples from healthy individuals, benign prostate hyperplasia (BPH) patients, and prostate cancer (PCa) patients. Lectin microarray was prepared using traditional lectins with the incorporation of 2 recombinant bacterial lectins and 3 human lectins (17 lectins in total). Clinical validation of glycans as biomarkers was done in two studies: discrimination of healthy individuals with BPH patients vs.

View Article and Find Full Text PDF

Background: To compare the clinical performance of a new PCa serum biomarker based on fPSA glycoprofiling to fPSA% and PHI.

Methods: Serum samples from men who underwent prostate biopsy due to increased PSA were used. A comparison between two equal groups (with histologically confirmed PCa or benign, non-cancer condition) was used for the clinical validation of a new glycan-based PCa oncomarker.

View Article and Find Full Text PDF

For efficient and effective utilization of MXene such as biosensing or advanced applications, interfacial modification of MXene needs to be considered. To this end, we describe modification of TiCT MXene by aryldiazonium-based grafting with derivatives bearing a sulfo- (SB) or carboxy- (CB) betaine pendant moiety. Since MXene contains free electrons, betaine derivatives could be grafted to MXene spontaneously.

View Article and Find Full Text PDF

The article describes preparation, characterization and further modification of hybrid magnetic particles (Au nanoshells with a magnetic core (MPs@silica@Au)) by zwitterionic molecules bearing diazonium functional groups. Such hybrid magnetic particles modified by zwitterionic molecules exhibit the following features: •Responsiveness towards external magnetic field applicable for various enrichment strategies due to magnetic core;•Golden outer layer exhibiting free surface plasmons could be used for grafting of zwitterionic molecules diazonium functionality;•Zwitterionic interface on such particles provides resistivity towards non-specific protein binding; and at the same time such interface was applied for immobilization of antibodies against prostate specific antigen (PSA) applied for selective enrichment of PSA from serum samples with subsequent electrochemical assays. The approach presented here using hybrid magnetic particles can be easily applied for immobilization of antibodies using a highly robust surface patterning protocols by formation of a self-assembled monolayer with delivery of functional groups on the outer surface of magnetic particles.

View Article and Find Full Text PDF

The initial part of this review details the controversy behind the use of a serological level of prostate-specific antigen (PSA) for the diagnostics of prostate cancer (PCa). Novel biomarkers are in demand for PCa diagnostics, outperforming traditional PSA tests. The review provides a detailed and comprehensive summary that PSA glycoprofiling can effectively solve this problem, thereby considerably reducing the number of unnecessary biopsies.

View Article and Find Full Text PDF

In this paper several advances were implemented for glycoprofiling of prostate specific antigen (PSA), what can be applied for better prostate cancer (PCa) diagnostics in the future: 1) application of Au nanoshells with a magnetic core (MP@silica@Au); 2) use of surface plasmons of Au nanoshells with a magnetic core for spontaneous immobilization of zwitterionic molecules via diazonium salt grafting; 3) a double anti-fouling strategy with integration of zwitterionic molecules on Au surface and on MP@silica@Au particles was implemented to resist non-specific protein binding; 4) application of anti-PSA antibody modified Au nanoshells with a magnetic core for enrichment of PSA from a complex matrix of a human serum; 5) direct incubation of anti-PSA modified MP@silica@Au with affinity bound PSA to the lectin modified electrode surface. The electrochemical impedance spectroscopy (EIS) signal was enhanced 43 times integrating Au nanoshells with a magnetic core compared to the biosensor without them. This proof-of-concept study shows that the biosensor could detect PSA down to 1.

View Article and Find Full Text PDF

: Prostate cancer (PCa) is a life-threatening disease affecting millions of men. The current best PCa biomarker (level of prostate-specific antigen in serum) lacks specificity for PCa diagnostics and this is why novel PCa biomarkers in addition to the conventional ones based on biomolecules such as DNA, RNA and proteins need to be identified. : This review details the potential of glycans-based biomarkers to become diagnostic, prognostic, predictive and therapeutic PCa biomarkers with a brief description of the innovative approaches applied to glycan analysis to date.

View Article and Find Full Text PDF

In this study, one hundred serum samples from healthy people and patients with rheumatoid arthritis (RA) were analyzed. Standard immunoassays for detection of 10 different RA markers and analysis of glycan markers on antibodies in 10 different assay formats with several lectins were applied for each serum sample. A dataset containing 2000 data points was data mined using artificial neural networks (ANN).

View Article and Find Full Text PDF

Screening serum for the presence of prostate specific antigen (PSA) belongs to the most common approach for the detection of prostate cancer. This review (with 156 refs.) addresses recent developments in PSA detection based on the use of various kinds of nanomaterials.

View Article and Find Full Text PDF

An extensive characterization of pristine and oxidized TiCT (T: =O, -OH, -F) MXene showed that exposure of MXene to an anodic potential in the aqueous solution oxidizes the nanomaterial forming TiO layer or TiO domains with subsequent TiO dissolution by F ions, making the resulting nanomaterial less electrochemically active compared to the pristine TiCT. The TiCT could be thus applied for electrochemical reactions in a cathodic potential window i.e.

View Article and Find Full Text PDF

In this study, two quaternary ammonium salts derived from l-lipoic acid were applied for self-assembled monolayers formation on rough structured gold surface. The derivatives differ in functionality since one possesses simple quaternary ammonium group whereas the other one is carboxybetaine ester containing quaternary ammonium group with pH hydrolysable ester group as a pendant. The response of surface wettability to ion exchange between Cl and perfluorooctanoate, kinetics and gradient wettability were examined by water contact angle measurement and confirmed by X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF