This study investigated whether sacubitril/valsartan or valsartan are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in two experimental models of pre-hypertension induced by continuous light (24 hours/day) exposure or by chronic lactacystin treatment, and how this potential protection interferes with the renin-angiotensin-aldosterone system (RAAS). Nine groups of three-month-old male Wistar rats were treated for six weeks as follows: untreated controls (C), sacubitril/valsartan (ARNI), valsartan (Val), continuous light (24), continuous light plus sacubitril/valsartan (24+ARNI) or valsartan (24+Val), lactacystin (Lact), lactacystin plus sacubitil/valsartan (Lact+ARNI) or plus valsartan (Lact+Val). Both the 24 and Lact groups developed a mild but significant systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, as well as LV systolic and diastolic dysfunction.
View Article and Find Full Text PDFBackground: Angiotensin converting enzyme 2 (ACE2) plays a crucial role in the infection cycle of SARS-CoV-2 responsible for formation of COVID-19 pandemic. In the cardiovascular system, the virus enters the cells by binding to the transmembrane form of ACE2 causing detrimental effects especially in individuals with developed hypertension or heart disease. Zofenopril, a HS-releasing angiotensin-converting enzyme inhibitor (ACEI), has been shown to be effective in the treatment of patients with essential hypertension; however, in conditions of ACE2 inhibition its potential beneficial effect has not been investigated yet.
View Article and Find Full Text PDFThis study investigated whether chronic isoproterenol administration could induce kidney alterations and whether ivabradine, a heart rate (HR)-reducing substance exerting cardiovascular protection, is able to attenuate potential kidney damage. Twenty-eight Wistar rats were divided into non-diseased controls, rats treated with ivabradine, rats treated with isoproterenol, and rats treated with isoproterenol plus ivabradine. Six weeks of isoproterenol administration was associated with decreased systolic blood pressure (SBP) (by 25%) and glomerular, tubulointerstitial and vascular/perivascular fibrosis due to enhanced type I collagen volume (7-, 8-, and 4-fold, respectively).
View Article and Find Full Text PDFBackground: Elevated myocardial intracellular sodium ([Na]) was shown to decrease mitochondrial calcium ([Ca]) via mitochondrial sodium/calcium exchanger (NCX), resulting in decreased mitochondrial ATP synthesis. The sodium-glucose co-transporter 2 inhibitor (SGLT2i) ertugliflozin (ERTU) improved energetic deficit and contractile dysfunction in a mouse model of high fat, high sucrose (HFHS) diet-induced diabetic cardiomyopathy (DCMP). As SGLT2is were shown to lower [Na] in isolated cardiomyocytes, we hypothesized that energetic improvement in DCMP is at least partially mediated by a decrease in abnormally elevated myocardial [Na].
View Article and Find Full Text PDFAnxiety disorders are the most common mental diseases. Anxiety and the associated physical symptoms may disturb social and occupational life and increase the risk of somatic diseases. The pathophysiology of anxiety development is complex and involves alterations in stress hormone production, neurosignaling pathways or free radical production.
View Article and Find Full Text PDFLactacystin is a specific proteasome inhibitor that blocks the hydrolysis of intracellular proteins by ubiquitin/proteasome system inhibition. The administration of lactacystin to rats induced hypertension and remodeling of the left ventricle and aorta. This study tested whether lactacystin induces structural and fibrotic rebuilding of the kidneys and whether melatonin and captopril can prevent these potential changes.
View Article and Find Full Text PDFThis study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether this potential protection is associated with RAAS alterations. Five groups of three-month-old male Wistar rats and SHRs were treated for six weeks as follows: untreated Wistar controls, Wistar plus sacubitril/valsartan, SHR, SHR plus sacubitril/valsartan, and SHR plus ivabradine. The SHRs developed a systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, and LV systolic and diastolic dysfunction.
View Article and Find Full Text PDFBesides acute respiratory distress syndrome, acute cardiac injury is a major complication in severe coronavirus disease 2019 (COVID-19) and is associated with a poor clinical outcome. Acute cardiac injury with COVID-19 can be of various etiologies, including myocardial ischemia or infarction and myocarditis, and may compromise cardiac function, resulting in acute heart failure or cardiogenic shock. Systemic inflammatory response increases heart rate (HR), which disrupts the myocardial oxygen supply/demand balance and worsens cardiac energy efficiency, thus further deteriorating the cardiac performance of the injured myocardium.
View Article and Find Full Text PDFBackground: Current heart failure therapies unload the failing heart without targeting the underlying problem of reduced cardiac contractility. Traditional inotropes (ie, calcitropes) stimulate contractility via energetically costly augmentation of calcium cycling and worsen patient survival. A new class of agents-myotropes-activates the sarcomere directly, independent of calcium.
View Article and Find Full Text PDFAngiotensin-converting enzyme 2 (ACE2) is the leading player of the protective renin-angiotensin system (RAS) pathway but also the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RAS inhibitors seemed to interfere with the ACE2 receptor, and their safety was addressed in COVID-19 patients. Pedrosa et al.
View Article and Find Full Text PDFThis study investigated whether ivabradine, a selective I current inhibitor reducing heart rate (HR), is able to improve survival and prevent left ventricular (LV) remodeling in isoproterenol-induced heart damage. Wistar rats were treated for 6 weeks: controls (n = 10), ivabradine (10 mg/kg/day orally; n = 10), isoproterenol (5 mg/kg/day intraperitoneally; n = 40), and isoproterenol plus ivabradine (n = 40). Isoproterenol increased mortality, induced hypertrophy of both ventricles and LV fibrotic rebuilding, and reduced systolic blood pressure (SBP).
View Article and Find Full Text PDFHypertension-induced renal injury is characterized by structural kidney alterations and function deterioration. Therapeutics for kidney protection are limited, thus novel renoprotectives in hypertension are being continuously sought out. Ivabradine, an inhibitor of the I current in the sinoatrial node reducing heart rate (HR), was shown to be of benefit in various cardiovascular pathologies.
View Article and Find Full Text PDFMetabolic heart disease (MHD), which is strongly associated with heart failure with preserved ejection fraction, is characterized by reduced mitochondrial energy production and contractile performance. In this study, we tested the hypothesis that an acute increase in ATP synthesis, via short chain fatty acid (butyrate) perfusion, restores contractile function in MHD. Isolated hearts of mice with MHD due to consumption of a high fat high sucrose (HFHS) diet or on a control diet (CD) for 4 months were studied using P NMR spectroscopy to measure high energy phosphates and ATP synthesis rates during increased work demand.
View Article and Find Full Text PDFIvabradine decreases heart rate by selective inhibition of the I current in the sinoatrial node. Ivabradine is declared to have no direct effect on the autonomic nervous system (ANS). However, there are some data suggesting an (at least indirect) effect of ivabradine on the ANS.
View Article and Find Full Text PDFCalcium (Ca), an important second messenger, regulates many cellular activities and varies spatiotemporally within the cell. Conventional methods to monitor Ca changes, such as synthetic Ca indicators, are not targetable, while genetically encoded Ca indicators (GECI) can be precisely directed to cellular compartments. GECIs are chimeric proteins composed of calmodulin (or other proteins that change conformation on Ca binding) coupled with two fluorescent proteins that come closer together after an increase in [Ca], and enhance Förster resonance energy transfer (FRET) that allows for ratiometric [Ca] assessment.
View Article and Find Full Text PDF