Publications by authors named "TomaZ Rejec"

Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly nonlocal Berry curvature exhibits critical behavior near a quantum critical point. We investigate the critical properties of its real space analog, the local Chern marker, in weakly disordered Chern insulators. Because of disorder, inhomogeneities appear in the spatial distribution of the local Chern marker.

View Article and Find Full Text PDF

The electrochemical degradation of two solvent-based electrolytes for Mg-metal batteries is investigated through a grand canonical density functional theory (DFT) approach. Both electrolytes are highly reactive in the double layer region where the solvated species have no direct contact with the Mg-surface, hence emphasizing that surface reactions are not the only phenomena responsible for electrolyte degradation. Applied to dimethoxyethane (DME) and ethylene carbonate (EC), the present methodology shows that both solvents should thermodynamically decompose in the double layer prior to the Mg/Mg reduction, leading to electrochemically inactive reaction products.

View Article and Find Full Text PDF

If simple guidelines could be established for understanding how quantum interference (QI) can be exploited to control the flow of electricity through single molecules, then new functional molecules, which exploit room-temperature QI could be rapidly identified and subsequently screened. Recently it was demonstrated that conductance ratios of molecules with aromatic cores, with different connectivities to electrodes, can be predicted using a simple and easy-to-use "magic number theory." In contrast with counting rules and "curly-arrow" descriptions of destructive QI, magic number theory captures the many forms of constructive QI, which can occur in molecular cores.

View Article and Find Full Text PDF

One of the crucial steps for the development of batteries is understanding the interface stability and morphological changes occurring during continuous stripping and deposition. In order to investigate the dependence of morphology evolution on surface orientation, we examine the energetics and growth mechanism on magnesium (0001), (101[combining macron]0), (101[combining macron]1), (112[combining macron]0) and (112[combining macron]1) surface orientations using density functional theory and kinetic Monte Carlo simulations. Workfunctions, surface, adsorption and interaction energies, diffusion barriers and k-rates for diffusion via hopping and exchange mechanisms are studied.

View Article and Find Full Text PDF

The ratio of conductances through carbon-ring based molecules are calculated for various positions of source-drain electrode leads on the molecule. These ratios are usually integers the so-called magic numbers. We find that deviations of the magic number ratios are either zero or quadratic in ratios of tight-binding model parameters.

View Article and Find Full Text PDF

A quantum point contact (QPC) is a narrow constriction between two wider electron reservoirs, and is the standard building block of sub-micrometre devices such as quantum dots and qubits (the proposed basic elements of quantum computers). The conductance through a QPC changes as a function of its width in integer steps of G(0) = 2e2/h (where e is the charge on an electron, and h is Planck's constant), signalling the quantization of its transverse modes. But measurements of these conductance steps also reveal an additional shoulder at a value around 0.

View Article and Find Full Text PDF