Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented.
View Article and Find Full Text PDFThe Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms.
View Article and Find Full Text PDFCorNet is a web-based tool for the analysis of co-evolving residue positions in protein super-family sequence alignments. CorNet projects external information such as mutation data extracted from literature on interactively displayed groups of co-evolving residue positions to shed light on the functions associated with these groups and the residues in them. We used CorNet to analyse six enzyme super-families and found that groups of strongly co-evolving residues tend to consist of residues involved in a same function such as activity, specificity, co-factor binding, or enantioselectivity.
View Article and Find Full Text PDFHomology and similarity based approaches are most widely used for the identification of new enzymes for biocatalysis. However, they are not suitable to find truly novel scaffolds with a desired function and this averts options and diversity. Hydroxynitrile lyases (HNLs) are an example of non-homologous isofunctional enzymes for the synthesis of chiral cyanohydrins.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2017
Pyridoxal-5'-phosphate (PLP)-dependent enzymes are ubiquitous in nature and catalyze a variety of important metabolic reactions. The fold-type III PLP-dependent enzyme family is primarily comprised of decarboxylases and alanine racemases. In the development of a multiple structural alignment database (3DM) for the enzyme family, a large subset of 5666 uncharacterized proteins with high structural, but low sequence similarity to alanine racemase and decarboxylases was found.
View Article and Find Full Text PDFBaeyer-Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to esters or lactones by using molecular oxygen and a cofactor. Type I BVMOs display a strong preference for NADPH. However, for industrial purposes NADH is the preferred cofactor, as it is ten times cheaper and more stable.
View Article and Find Full Text PDFTo alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5'-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase.
View Article and Find Full Text PDFIn recent years, carbohydrate epimerases have attracted a lot of attention as efficient biocatalysts that can convert abundant sugars (e.g.d-fructose) directly into rare counterparts (e.
View Article and Find Full Text PDFIn order to improve the efficiency of directed evolution experiments, in silico multiple-substrate clustering was combined with an analysis of the variability of natural enzymes within a protein superfamily. This was applied to a Pseudomonas fluorescens esterase (PFE I) targeting the enantioselective hydrolysis of 3-phenylbutyric acid esters. Data reported in the literature for nine substrates were used for the clustering meta-analysis of the docking conformations in wild-type PFE I, and this highlighted a tryptophan residue (W28) as an interesting target.
View Article and Find Full Text PDFIn this review we analyse structure/sequence-function relationships for the superfamily of PLP-dependent enzymes with special emphasis on class III transaminases. Amine transaminases are highly important for applications in biocatalysis in the synthesis of chiral amines. In addition, other enzyme activities such as racemases or decarboxylases are also discussed.
View Article and Find Full Text PDFGenetic disorders are often caused by nonsynonymous nucleotide changes in one or more genes associated with the disease. Specific amino acid changes, however, can lead to large variability of phenotypic expression. For many genetic disorders this results in an increasing amount of publications describing phenotype-associated mutations in disorder-related genes.
View Article and Find Full Text PDF