Analyzing polysorbate 20 (PS20) composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance. The similar structures and polarities of PS20 components make accurate separation, identification, and quantification challenging. In this work, a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography (HPLC) with charged aerosol detection (CAD) to separate 18 key components with multiple esters.
View Article and Find Full Text PDFUnlabelled: Congenital hyperinsulinism (HI) is a genetic disorder in which pancreatic β-cell insulin secretion is excessive and results in hypoglycemia that, without treatment, can cause brain damage or death. Most patients with loss-of-function mutations in ABCC8 and KCNJ11, the genes encoding the β-cell ATP-sensitive potassium channel (KATP), are unresponsive to diazoxide, the only U.S.
View Article and Find Full Text PDFThe SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is an evolving global public health crisis in need of therapeutic options. Passive immunization of monoclonal antibodies (mAbs) represents a promising therapeutic strategy capable of conferring immediate protection from SARS-CoV-2 infection. Herein, we describe the discovery and characterization of neutralizing SARS-CoV-2 IgG and VHH antibodies from four large-scale phage libraries.
View Article and Find Full Text PDFAntibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)–directed antibody communities with distinct footprints and competition profiles.
View Article and Find Full Text PDFBackground: Development of successful neutralizing antibodies is dependent upon broad epitope coverage to increase the likelihood of achieving therapeutic function. Recent advances in synthetic biology have allowed us to conduct an epitope binning study on a large panel of antibodies identified to bind to Ebola virus glycoprotein with only published sequences.
Methods And Results: A rapid, first-pass epitope binning experiment revealed seven distinct epitope families that overlapped with known structural epitopes from the literature.
G protein-coupled receptors (GPCRs) are a group of seven-transmembrane receptor proteins that have proven to be successful drug targets. Antibodies are becoming an increasingly promising modality to target these receptors due to their unique properties, such as exquisite specificity, long half-life, and fewer side effects, and their improved pharmacokinetic and pharmacodynamic profiles compared to peptides and small molecules, which results from their more favorable biodistribution. To date, there are only two US Food and Drug Administration-approved GPCR antibody drugs, namely erenumab and mogamulizumab, and this highlights the challenges encountered in identifying functional antibodies against GPCRs.
View Article and Find Full Text PDFRecombinant protein overexpression of large proteins in bacteria often results in insoluble and misfolded proteins directed to inclusion bodies. We report the application of shear stress in micrometer-wide, thin fluid films to refold boiled hen egg white lysozyme, recombinant hen egg white lysozyme, and recombinant caveolin-1. Furthermore, the approach allowed refolding of a much larger protein, cAMP-dependent protein kinase A (PKA).
View Article and Find Full Text PDFPhage display offers a powerful approach to engineer protein affinity. A naturally occurring analog to phage display, the Bordetella bronchiseptica bacteriophage (BP) employs a highly variable protein termed the major tropism determinant (Mtd) to recognize its dynamic host. Propagation of BP provides a self-made phage library (SMPL) with vast numbers of phage particles, each displaying a single Mtd variant.
View Article and Find Full Text PDFWe demonstrate the de novo fabrication of a biosensor, based upon virus-containing poly(3,4-ethylene-dioxythiophene) (PEDOT) nanowires, that detects prostate-specific membrane antigen (PSMA). This development process occurs in three phases: (1) isolation of a M13 virus with a displayed polypeptide receptor, from a library of ≈10(11) phage-displayed peptides, which binds PSMA with high affinity and selectivity, (2) microfabrication of PEDOT nanowires that entrain these virus particles using the lithographically patterned nanowire electrodeposition (LPNE) method, and (3) electrical detection of the PSMA in high ionic strength (150 mM salt) media, including synthetic urine, using an array of virus-PEDOT nanowires with the electrical resistance of these nanowires for transduction. The electrical resistance of an array of these nanowires increases linearly with the PSMA concentration from 20 to 120 nM in high ionic strength phosphate-buffered fluoride (PBF) buffer, yielding a limit of detection (LOD) for PSMA of 56 nM.
View Article and Find Full Text PDFPhage display libraries are widely used as tools for identifying, dissecting and optimizing ligands. Development of a simple method to access greater library diversities could expedite and expand the technique. This paper reports progress toward harnessing the naturally occurring diversity generating retroelement used by Bordetella bronchiseptica bacteriophage to alter its tail-fiber protein.
View Article and Find Full Text PDFObjective: To evaluate clinical, microbiologic, and pathologic outcomes in mice after inoculation with 4 equine-origin Corynebacterium pseudotuberculosis strains.
Animals: 15 C3H/HeJ mice.
Procedures: In a preliminary study, the optimum route of inoculation was determined.