Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression. We previously demonstrated that serotonylation and dopaminylation of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour.
View Article and Find Full Text PDFUnderstanding the molecular mechanisms underlying chromatin regulation, the complexity of which seems to deepen with each passing year, requires a multidisciplinary approach. While many different tools have been brought to bear in this area, here we focus on those that have emerged from the field of chemical biology. We discuss methods that allow the generation of what is now commonly referred to as "designer chromatin," a term that was coined by the late C.
View Article and Find Full Text PDFNat Chem Biol
October 2024
The post-translational regulation of protein function is involved in most cellular processes. As such, synthetic biology tools that operate at this level provide opportunities for manipulating cellular states. Here we deploy proximity-triggered protein trans-splicing technology to enable the time-resolved synthesis of target proteins from premade parts.
View Article and Find Full Text PDFProtein engineering through the chemical or enzymatic ligation of polypeptide fragments has proven enormously powerful for studying countless biochemical processes . In general, this strategy necessitates a protein folding step following ligation of the unstructured fragments, a requirement that constrains the types of systems amenable to the approach. Here, we report an strategy that allows internal regions of target proteins to be replaced in a single operation.
View Article and Find Full Text PDFCell differentiation and tissue specialization lead to unique cellular surface landscapes and exacerbated or loss of expression patterns can result in further heterogenicity distinctive of pathological phenotypes. Immunotherapies and emerging protein therapeutics seek to exploit such differences by engaging cell populations selectively based on their surface markers. Since a single surface antigen rarely defines a specific cell type, the development of programmable molecular systems that integrate multiple cell surface features to convert on-target inputs to user-defined outputs is highly desirable.
View Article and Find Full Text PDFThe eukaryotic genome, first packed into nucleosomes of about 150 bp around the histone core, is organized into euchromatin and heterochromatin, corresponding to the A and B compartments, respectively. Here, we asked if individual nucleosomes in vivo know where to go. That is, do mono-nucleosomes by themselves contain A/B compartment information, associated with transcription activity, in their biophysical properties? We purified native mono-nucleosomes to high monodispersity and used physiological concentrations of biological polyamines to determine their condensability.
View Article and Find Full Text PDFGenetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of 'designer' chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed.
View Article and Find Full Text PDFThe post-translational regulation of protein function is involved in most cellular processes. As such, synthetic biology tools that operate at this level provide opportunities for manipulating cellular states. Here, we deploy a proximity-triggered protein trans-splicing technology to enable the time-resolved synthesis of target proteins from pre-made parts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
Studying dynamic biological processes requires approaches compatible with the lifetimes of the biochemical transactions under investigation, which can be very short. We describe a genetically encoded system that allows protein neighborhoods to be mapped using visible light. Our approach involves fusing an engineered flavoprotein to a protein of interest.
View Article and Find Full Text PDFInteractions between biomolecules underlie all cellular processes and ultimately control cell fate. Perturbation of native interactions through mutation, changes in expression levels or external stimuli leads to altered cellular physiology and can result in either disease or therapeutic effects. Mapping these interactions and determining how they respond to stimulus is the genesis of many drug development efforts, leading to new therapeutic targets and improvements in human health.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Recent studies have identified serotonylation of glutamine-5 on histone H3 (H3Q5ser) as a novel posttranslational modification (PTM) associated with active transcription. While H3Q5ser is known to be installed by tissue transglutaminase 2 (TGM2), the substrate characteristics affecting deposition of the mark, at the level of both chromatin and individual nucleosomes, remain poorly understood. Here, we show that histone serotonylation is excluded from constitutive heterochromatic regions in mammalian cells.
View Article and Find Full Text PDFSplit intein-mediated protein trans-splicing (PTS) is widely applied in chemical biology and biotechnology to carry out traceless and specific protein ligation. However, the external residues immediately flanking the intein (exteins) can reduce the splicing rate, thereby limiting certain applications of PTS. Splicing by a recently developed intein with atypical split architecture ("Cat") exhibits a stark dependence on the sequence of its N-terminal extein residues.
View Article and Find Full Text PDFWork over the last decade has uncovered a new layer of epigenetic dysregulation. It is now appreciated that somatic missense mutations in histones, the packaging agents of genomic DNA, are often associated with human pathologies, especially cancer. Although some of these "oncohistone" mutations are thought to be key drivers of cancer, the impacts of the majority of them on disease onset and progression remain to be elucidated.
View Article and Find Full Text PDFIn virulence is under the control of a quorum sensing (QS) circuit encoded in the accessory gene regulator () genomic locus. Key to this pathogenic behavior is the production and signaling activity of a secreted pheromone, the autoinducing peptide (AIP), generated following the ribosomal synthesis and posttranslational modification of a precursor polypeptide, AgrD, through two discrete cleavage steps. The integral membrane protease AgrB is known to catalyze the first processing event, generating the AIP biosynthetic intermediate, AgrD (1-32) thiolactone.
View Article and Find Full Text PDFNucleosomes frequently exist as asymmetric species in native chromatin contexts. Current methods for the traceless generation of these heterotypic chromatin substrates are inefficient and/or difficult to implement. Here, we report an application of the SpyCatcher/SpyTag system as a convenient route to assemble desymmetrized nucleoprotein complexes.
View Article and Find Full Text PDFNucleosomes, the structural building blocks of chromatin, possess 2-fold pseudo symmetry which can be broken through differential modification or removal of one copy of a pair of sister histones. The resultant asymmetric nucleosomes and hexasomes have been implicated in gene regulation, yet the use of these noncanonical substrates in chromatin biochemistry is limited, owing to the lack of efficient methods for their preparation. Here, we report a strategy that allows the orientation of these asymmetric species to be tightly controlled relative to the underlying DNA sequence.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) in the nucleus play key roles in transcriptional regulation and ensure genomic stability. Critical to this are histone-mediated PPI networks, which are further fine-tuned through dynamic post-translational modification. Perturbation to these networks leads to genomic instability and disease, presenting epigenetic proteins as key therapeutic targets.
View Article and Find Full Text PDFMammalian SWI/SNF (mSWI/SNF) adenosine triphosphate-dependent chromatin remodelers modulate genomic architecture and gene expression and are frequently mutated in disease. However, the specific chromatin features that govern their nucleosome binding and remodeling activities remain unknown. We subjected endogenously purified mSWI/SNF complexes and their constituent assembly modules to a diverse library of DNA-barcoded mononucleosomes, performing more than 25,000 binding and remodeling measurements.
View Article and Find Full Text PDFThe fundamental repeating unit of chromatin, the nucleosome, is composed of DNA wrapped around two copies each of four canonical histone proteins. Nucleosomes possess 2-fold pseudo-symmetry that is subject to disruption in cellular contexts. For example, the post-translational modification (PTM) of histones plays an essential role in epigenetic regulation, and the introduction of a PTM on only one of the two "sister" histone copies in a given nucleosome eliminates the inherent symmetry of the complex.
View Article and Find Full Text PDFADP-ribosylation of nuclear proteins is a critical feature of various DNA damage repair pathways. Histones, particularly H3 and H2B, are major targets of ADP-ribosylation and are primarily modified on serine with a single ADP-ribose unit following DNA damage. While the overall impact of PARP1-dependent poly-ADP-ribosylation is heavily investigated, very little is known about the specific roles of histone ADP-ribosylation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2021
DOT1L, the only H3K79 methyltransferase in human cells and a homolog of the yeast Dot1, normally forms a complex with AF10, AF17, and ENL or AF9, is dysregulated in most cases of mixed-lineage leukemia (MLLr), and has been believed to regulate transcriptional elongation on the basis of its colocalization with RNA polymerase II (Pol II), the sharing of subunits (AF9 and ENL) between the DOT1L and super elongation complexes, and the distribution of H3K79 methylation on both promoters and transcribed regions of active genes. Here we show that DOT1L depletion in erythroleukemic cells reduces its global occupancy without affecting the traveling ratio or the elongation rate (assessed by 4sUDRB-seq) of Pol II, suggesting that DOT1L does not play a major role in elongation in these cells. In contrast, analyses of transcription initiation factor binding reveal that DOT1L and ENL depletions each result in reduced TATA binding protein (TBP) occupancies on thousands of genes.
View Article and Find Full Text PDFThe field of epigenetics has exploded over the last two decades, revealing an astonishing level of complexity in the way genetic information is stored and accessed in eukaryotes. This expansion of knowledge, which is very much ongoing, has been made possible by the availability of evermore sensitive and precise molecular tools. This review focuses on the increasingly important role that chemistry plays in this burgeoning field.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
June 2021
Introduction of α-N-methylated non-proteinogenic amino acids into peptides can improve their biological activities, membrane permeability and proteolytic stability. This is commonly achieved, in nature and in the lab, by assembling pre-methylated amino acids. The more appealing route of methylating amide bonds is challenging.
View Article and Find Full Text PDF