Background: Kawasaki disease (KD) is an acute vasculitis in children that can cause coronary artery abnormalities. Its diagnosis is challenging, and many cytokines, chemokines, acute phase reactants, and growth factors have failed evaluation as specific biomarkers to distinguish KD from other febrile illnesses. We performed protein profiling, comparing plasma from children with KD with febrile control (FC) subjects to determine if there were specific proteins or peptides that could distinguish the two clinical states.
View Article and Find Full Text PDFObjective: Our objective was to compare protein profiles of cerebrospinal fluid between control animals and those subjected to cardiopulmonary bypass after moderate versus deep hypothermic circulatory arrest with selective cerebral perfusion.
Methods: Immature Yorkshire piglets were assigned to one of four study groups: (1) deep hypothermic circulatory arrest at 18 degrees C, (2) deep hypothermic circulatory arrest at 18 degrees C with selective cerebral perfusion, (3) moderate hypothermic circulatory arrest at 25 degrees C with selective cerebral perfusion, or (4) age-matched control animals without surgery. Animals undergoing cardiopulmonary bypass were cooled to their assigned group temperature and exposed to 1 hour of hypothermic circulatory arrest.
Preterm labor (PTL) is frequently associated with inflammation. We hypothesized that biomarkers during pregnancy can identify pregnancies most at risk for development of PTL. An inflammation-induced mouse model of PTL was used.
View Article and Find Full Text PDFAlpha-zirconium phosphate nanoplatelets (alpha-ZrPN) were studied as a binding agent for phosphopeptides. Nanoplatelets of alpha-zirconium phosphate were incubated overnight with zirconium oxychloride, followed by centrifugation, and washed twice with water followed by an aqueous solution of 80% acetonitrile to form the binding agent. Alpha-ZrPN were able specifically to capture phosphoserine-containing peptides from a tryptic digest of a complex peptide mixture in which its abundance was only 0.
View Article and Find Full Text PDFPreterm infants are at risk of developing sepsis, necrotizing enterocolitis (NEC), chronic lung disease (CLD), and retinopathy of prematurity (ROP). We used high-throughput mass spectrometry to investigate whether cord blood proteins can be used to predict development of these morbidities. Cord blood plasma from 44 infants with a birth weight of <1500 g was analyzed by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF).
View Article and Find Full Text PDF